com.intel.analytics.bigdl.nn

VolumetricFullConvolution

class VolumetricFullConvolution[T] extends AbstractModule[Activity, Tensor[T], T] with Initializable

Apply a 3D full convolution over an 3D input image, a sequence of images, or a video etc. The input tensor is expected to be a 4D or 5D(with batch) tensor. Note that instead of setting adjT, adjW and adjH, VolumetricConvolution also accepts a table input with two tensors: T(convInput, sizeTensor) where convInput is the standard input tensor, and the size of sizeTensor is used to set the size of the output (will ignore the adjT, adjW and adjH values used to construct the module). This module can be used without a bias by setting parameter noBias = true while constructing the module.

If input is a 4D tensor nInputPlane x depth x height x width, odepth = (depth - 1) * dT - 2*padT + kT + adjT owidth = (width - 1) * dW - 2*padW + kW + adjW oheight = (height - 1) * dH - 2*padH + kH + adjH

Other frameworks call this operation "In-network Upsampling", "Fractionally-strided convolution", "Backwards Convolution," "Deconvolution", or "Upconvolution."

Reference Paper: Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.

Annotations
@SerialVersionUID( 809921720980508072L )
Linear Supertypes
Initializable, AbstractModule[Activity, Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. VolumetricFullConvolution
  2. Initializable
  3. AbstractModule
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new VolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    nInputPlane

    The number of expected input planes in the image given into forward()

    nOutputPlane

    The number of output planes the convolution layer will produce.

    kT

    The kernel depth of the convolution.

    kW

    The kernel width of the convolution.

    kH

    The kernel height of the convolution.

    dT

    The step of the convolution in the depth dimension. Default is 1.

    dW

    The step of the convolution in the width dimension. Default is 1.

    dH

    The step of the convolution in the height dimension. Default is 1.

    padT

    The additional zeros added per depth to the input planes. Default is 0.

    padW

    The additional zeros added per width to the input planes. Default is 0.

    padH

    The additional zeros added per height to the input planes. Default is 0.

    adjT

    Extra depth to add to the output image. Default is 0.

    adjW

    Extra width to add to the output image. Default is 0.

    adjH

    Extra height to add to the output image. Default is 0.

    nGroup

    Kernel group number.

    noBias

    If bias is needed.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val _1x1x1: Boolean

    Attributes
    protected
  7. def accGradParameters(input: Activity, gradOutput: Tensor[T]): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput

    Definition Classes
    VolumetricFullConvolutionAbstractModule
  8. var adjH: Int

    Extra height to add to the output image.

    Extra height to add to the output image. Default is 0.

  9. var adjT: Int

    Extra depth to add to the output image.

    Extra depth to add to the output image. Default is 0.

  10. var adjW: Int

    Extra width to add to the output image.

    Extra width to add to the output image. Default is 0.

  11. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    name
    returns

    Definition Classes
    AbstractModule
  12. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  13. var bRegularizer: Regularizer[T]

  14. def backward(input: Activity, gradOutput: Tensor[T]): Activity

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  15. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  16. val bias: Tensor[T]

  17. var biasInitMethod: InitializationMethod

    Attributes
    protected
    Definition Classes
    Initializable
  18. def calcGradParametersFrame(input: Tensor[T], gradOutput: Tensor[T], gradWeight: Tensor[T], gradBias: Tensor[T], columns: Tensor[T], outputDepth: Int, outputHeight: Int, outputWidth: Int, scaleW: T, scaleB: T)(implicit ev: TensorNumeric[T]): Unit

    Attributes
    protected
  19. def canEqual(other: Any): Boolean

    Definition Classes
    AbstractModule
  20. def checkEngineType(): VolumetricFullConvolution.this.type

    get execution engine type

    get execution engine type

    Definition Classes
    AbstractModule
  21. def clearState(): VolumetricFullConvolution.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    VolumetricFullConvolutionAbstractModule
  22. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. def cloneModule(): AbstractModule[Activity, Tensor[T], T]

    Definition Classes
    AbstractModule
  24. def copyStatus(src: Module[T]): VolumetricFullConvolution.this.type

    Copy the useful running status from src to this.

    Copy the useful running status from src to this.

    The subclass should override this method if it has some parameters besides weight and bias. Such as runningMean and runningVar of BatchNormalization.

    src

    source Module

    returns

    this

    Definition Classes
    AbstractModule
  25. val dH: Int

    The step of the convolution in the height dimension.

    The step of the convolution in the height dimension. Default is 1.

  26. val dT: Int

    The step of the convolution in the depth dimension.

    The step of the convolution in the depth dimension. Default is 1.

  27. val dW: Int

    The step of the convolution in the width dimension.

    The step of the convolution in the width dimension. Default is 1.

  28. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  29. def equals(obj: Any): Boolean

    Definition Classes
    VolumetricFullConvolutionAbstractModule → AnyRef → Any
  30. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Definition Classes
    AbstractModule
  31. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    returns

    Definition Classes
    AbstractModule
  32. def evaluate(): VolumetricFullConvolution.this.type

    Definition Classes
    AbstractModule
  33. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  34. final def forward(input: Activity): Tensor[T]

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  35. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  36. def freeze(names: String*): VolumetricFullConvolution.this.type

    freeze the module, i.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    AbstractModule
  37. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  38. def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  39. def getNamePostfix: String

    Definition Classes
    AbstractModule
  40. def getNumericType(): TensorDataType

    returns

    Float or Double

    Definition Classes
    AbstractModule
  41. def getParameters(): (Tensor[T], Tensor[T])

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    returns

    Definition Classes
    AbstractModule
  42. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    VolumetricFullConvolutionAbstractModule
  43. def getPrintName(): String

    Attributes
    protected
    Definition Classes
    AbstractModule
  44. def getScaleB(): Double

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  45. def getScaleW(): Double

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  46. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Definition Classes
    AbstractModule
  47. def getWeightsBias(): Array[Tensor[T]]

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  48. val gradBias: Tensor[T]

  49. var gradInput: Activity

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  50. val gradWeight: Tensor[T]

  51. val gradWeightMMInBatch: Tensor[T]

    Attributes
    protected
  52. val gradientBiasMT: Tensor[T]

    Attributes
    protected
  53. def hasName: Boolean

    Definition Classes
    AbstractModule
  54. def hashCode(): Int

    Definition Classes
    VolumetricFullConvolutionAbstractModule → AnyRef → Any
  55. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  56. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  57. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  58. final def isTraining(): Boolean

    Definition Classes
    AbstractModule
  59. val kH: Int

    The kernel height of the convolution.

  60. val kT: Int

    The kernel depth of the convolution.

  61. val kW: Int

    The kernel width of the convolution.

  62. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  63. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): VolumetricFullConvolution.this.type

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  64. def loadWeights(weightPath: String, matchAll: Boolean = true): VolumetricFullConvolution.this.type

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  65. val nGroup: Int

    Kernel group number.

  66. val nInputPlane: Int

    The number of expected input planes in the image given into forward()

  67. val nOutputPlane: Int

    The number of output planes the convolution layer will produce.

  68. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  69. val noBias: Boolean

    If bias is needed.

  70. final def notify(): Unit

    Definition Classes
    AnyRef
  71. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  72. val onesBatch: Tensor[T]

    Attributes
    protected
  73. val onesBias: Tensor[T]

    Attributes
    protected
  74. var output: Tensor[T]

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  75. val padH: Int

    The additional zeros added per height to the input planes.

    The additional zeros added per height to the input planes. Default is 0.

  76. val padT: Int

    The additional zeros added per depth to the input planes.

    The additional zeros added per depth to the input planes. Default is 0.

  77. val padW: Int

    The additional zeros added per width to the input planes.

    The additional zeros added per width to the input planes. Default is 0.

  78. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    VolumetricFullConvolutionAbstractModule
  79. def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  80. def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  81. def quantize(): Module[T]

    Definition Classes
    AbstractModule
  82. def reset(): Unit

  83. def resetTimes(): Unit

    Definition Classes
    AbstractModule
  84. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): VolumetricFullConvolution.this.type

    Definition Classes
    AbstractModule
  85. def saveDefinition(path: String, overWrite: Boolean = false): VolumetricFullConvolution.this.type

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  86. def saveModule(path: String, overWrite: Boolean = false): VolumetricFullConvolution.this.type

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  87. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): VolumetricFullConvolution.this.type

    Definition Classes
    AbstractModule
  88. def saveTorch(path: String, overWrite: Boolean = false): VolumetricFullConvolution.this.type

    Definition Classes
    AbstractModule
  89. def saveWeights(path: String, overWrite: Boolean): Unit

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  90. var scaleB: Double

    Attributes
    protected
    Definition Classes
    AbstractModule
  91. var scaleW: Double

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  92. def setInitMethod(weightInitMethod: InitializationMethod = null, biasInitMethod: InitializationMethod = null): VolumetricFullConvolution.this.type

    Definition Classes
    Initializable
  93. def setLine(line: String): VolumetricFullConvolution.this.type

    Definition Classes
    AbstractModule
  94. def setName(name: String): VolumetricFullConvolution.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  95. def setNamePostfix(namePostfix: String): Unit

    Definition Classes
    AbstractModule
  96. def setScaleB(b: Double): VolumetricFullConvolution.this.type

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  97. def setScaleW(w: Double): VolumetricFullConvolution.this.type

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  98. def setWeightsBias(newWeights: Array[Tensor[T]]): VolumetricFullConvolution.this.type

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    returns

    Definition Classes
    AbstractModule
  99. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  100. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Generate graph module with start nodes

    Generate graph module with start nodes

    startNodes
    returns

    Definition Classes
    AbstractModule
  101. def toString(): String

    Definition Classes
    VolumetricFullConvolutionAbstractModule → AnyRef → Any
  102. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  103. def training(): VolumetricFullConvolution.this.type

    Definition Classes
    AbstractModule
  104. def unFreeze(names: String*): VolumetricFullConvolution.this.type

    "unfreeze" module, i.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    AbstractModule
  105. def updateGradInput(input: Activity, gradOutput: Tensor[T]): Activity

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    VolumetricFullConvolutionAbstractModule
  106. def updateGradInputFrame(gradInput: Tensor[T], gradOutput: Tensor[T], weight: Tensor[T], columns: Tensor[T], kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int, padW: Int, padH: Int, outputDepth: Int, outputHeight: Int, outputWidth: Int)(implicit ev: TensorNumeric[T]): Unit

    Attributes
    protected
  107. def updateOutput(input: Activity): Tensor[T]

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    VolumetricFullConvolutionAbstractModule
  108. def updateOutputFrame(input: Tensor[T], output: Tensor[T], weight: Tensor[T], bias: Tensor[T], columns: Tensor[T], kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int, padW: Int, padH: Int, nInputPlane: Int, inputDepth: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, outputDepth: Int, outputWidth: Int, outputHeight: Int)(implicit ev: TensorNumeric[T]): Unit

    Attributes
    protected
  109. def updateParameters(learningRate: T): Unit

  110. var wRegularizer: Regularizer[T]

  111. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  112. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  113. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  114. val weight: Tensor[T]

  115. var weightInitMethod: InitializationMethod

    Attributes
    protected
    Definition Classes
    Initializable
  116. var weightMM: Tensor[T]

    Attributes
    protected
  117. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    VolumetricFullConvolutionAbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): VolumetricFullConvolution.this.type

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    please use recommended saveModule(path, overWrite)

Inherited from Initializable

Inherited from AbstractModule[Activity, Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped