com.intel.analytics.bigdl

nn

package nn

Visibility
  1. Public
  2. All

Type Members

  1. class Abs[T] extends TensorModule[T]

    an element-wise abs operation

  2. class AbsCriterion[T] extends TensorCriterion[T]

    measures the mean absolute value of the element-wise difference between input and target

  3. class Add[T] extends TensorModule[T] with Initializable

    adds a bias term to input data ;

  4. class AddConstant[T] extends TensorModule[T]

    adding a constant

  5. class BCECriterion[T] extends TensorCriterion[T]

    This loss function measures the Binary Cross Entropy between the target and the output loss(o, t) = - 1/n sum_i (t[i] * log(o[i]) + (1 - t[i]) * log(1 - o[i])) or in the case of the weights argument being specified: loss(o, t) = - 1/n sum_i weights[i] * (t[i] * log(o[i]) + (1 - t[i]) * log(1 - o[i]))

  6. case class BatchNormParams[T](eps: Double = 1.0E-5, momentum: Double = 0.1, initWeight: Tensor[T] = null, initBias: Tensor[T] = null, initGradWeight: Tensor[T] = null, initGradBias: Tensor[T] = null, affine: Boolean = true)(implicit evidence$8: ClassTag[T], ev: TensorNumeric[T]) extends Product with Serializable

  7. class BatchNormalization[T] extends TensorModule[T] with Initializable

    This layer implements Batch Normalization as described in the paper: "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" by Sergey Ioffe, Christian Szegedy https://arxiv.

  8. class BiRecurrent[T] extends Container[Tensor[T], Tensor[T], T]

    This layer implement a bidirectional recurrent neural network

  9. class BifurcateSplitTable[T] extends AbstractModule[Tensor[T], Table, T]

    Creates a module that takes a Tensor as input and outputs two tables, splitting the Tensor along the specified dimension dimension.

  10. class Bilinear[T] extends AbstractModule[Table, Tensor[T], T] with Initializable

    a bilinear transformation with sparse inputs, The input tensor given in forward(input) is a table containing both inputs x_1 and x_2, which are tensors of size N x inputDimension1 and N x inputDimension2, respectively.

  11. class BinaryTreeLSTM[T] extends TreeLSTM[T]

    This class is an implementation of Binary TreeLSTM (Constituency Tree LSTM).

  12. class Bottle[T] extends Container[Tensor[T], Tensor[T], T]

    Bottle allows varying dimensionality input to be forwarded through any module that accepts input of nInputDim dimensions, and generates output of nOutputDim dimensions.

  13. class CAdd[T] extends TensorModule[T] with Initializable

    This layer has a bias tensor with given size.

  14. class CAddTable[T] extends AbstractModule[Table, Tensor[T], T]

    Merge the input tensors in the input table by element wise adding them together.

  15. class CDivTable[T] extends AbstractModule[Table, Tensor[_], T]

    Takes a table with two Tensor and returns the component-wise division between them.

  16. class CMaxTable[T] extends AbstractModule[Table, Tensor[T], T]

    Takes a table of Tensors and outputs the max of all of them.

  17. class CMinTable[T] extends AbstractModule[Table, Tensor[T], T]

    Takes a table of Tensors and outputs the min of all of them.

  18. class CMul[T] extends TensorModule[T] with Initializable

    This layer has a weight tensor with given size.

  19. class CMulTable[T] extends AbstractModule[Table, Tensor[T], T]

    Takes a table of Tensors and outputs the multiplication of all of them.

  20. class CSubTable[T] extends AbstractModule[Table, Tensor[_], T]

    Takes a table with two Tensor and returns the component-wise subtraction between them.

  21. abstract class Cell[T] extends AbstractModule[Table, Table, T]

    The Cell class is a super class of any recurrent kernels, such as RnnCell, LSTM and GRU.

  22. class Clamp[T] extends HardTanh[T]

    A kind of hard tanh activition function with integer min and max

  23. class ClassNLLCriterion[T] extends TensorCriterion[T]

    The negative log likelihood criterion.

  24. class ClassSimplexCriterion[T] extends MSECriterion[T]

    ClassSimplexCriterion implements a criterion for classification.

  25. class Concat[T] extends Container[Tensor[T], Tensor[T], T]

    Concat concatenates the output of one layer of "parallel" modules along the provided dimension: they take the same inputs, and their output is concatenated.

  26. class ConcatTable[T] extends Container[Activity, Table, T]

    ConcateTable is a container module like Concate.

  27. case class ConstInitMethod(value: Double) extends InitializationMethod with Product with Serializable

    Initializer that generates tensors with certain constant double.

  28. abstract class Container[A <: Activity, B <: Activity, T] extends AbstractModule[A, B, T]

    Container is an abstract AbstractModule class which declares methods defined in all containers.

  29. class Contiguous[T] extends TensorModule[T]

    used to make input, gradOutput both contiguous

  30. class ConvLSTMPeephole[T] extends Cell[T]

    Convolution Long Short Term Memory architecture with peephole.

  31. class ConvLSTMPeephole3D[T] extends Cell[T]

    Convolution Long Short Term Memory architecture with peephole.

  32. class Cosine[T] extends TensorModule[T] with Initializable

    Cosine calculates the cosine similarity of the input to k mean centers.

  33. class CosineDistance[T] extends AbstractModule[Table, Tensor[T], T]

    outputs the cosine distance between inputs

  34. class CosineDistanceCriterion[T] extends TensorCriterion[T]

    Creates a criterion that measures the loss given an input tensor and target tensor.

  35. class CosineEmbeddingCriterion[T] extends AbstractCriterion[Table, Table, T]

    Creates a criterion that measures the loss given an input x = {x1, x2}, a table of two Tensors, and a Tensor label y with values 1 or -1.

  36. class CrossEntropyCriterion[T] extends TensorCriterion[T]

    This criterion combines LogSoftMax and ClassNLLCriterion in one single class.

  37. class DenseToSparse[T] extends TensorModule[T]

    Convert DenseTensor to SparseTensor.

  38. class DiceCoefficientCriterion[T] extends TensorCriterion[T]

    The Dice-Coefficient criterion input: Tensor, target: Tensor

  39. class DistKLDivCriterion[T] extends TensorCriterion[T]

    The Kullback–Leibler divergence criterion

  40. class DotProduct[T] extends AbstractModule[Table, Tensor[T], T]

    This is a simple table layer which takes a table of two tensors as input and calculate the dot product between them as outputs

  41. class Dropout[T] extends TensorModule[T]

    Dropout masks(set to zero) parts of input using a bernoulli distribution.

  42. class ELU[T] extends TensorModule[T]

    Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) [http://arxiv.

  43. class Echo[T] extends TensorModule[T]

    This module is for debug purpose, which can print activation and gradient in your model topology

  44. class Euclidean[T] extends TensorModule[T] with Initializable

    Outputs the Euclidean distance of the input to outputSize centers

  45. class Exp[T] extends TensorModule[T]

    Applies element-wise exp to input tensor.

  46. class FlattenTable[T] extends AbstractModule[Table, Table, T]

    This is a table layer which takes an arbitrarily deep table of Tensors (potentially nested) as input and a table of Tensors without any nested table will be produced

  47. class GRU[T] extends Cell[T]

    Gated Recurrent Units architecture.

  48. class GaussianCriterion[T] extends AbstractCriterion[Table, Tensor[T], T]

    Computes the log-likelihood of a sample x given a Gaussian distribution p.

  49. class GaussianSampler[T] extends AbstractModule[Table, Tensor[T], T]

    Takes {mean, log_variance} as input and samples from the Gaussian distribution

  50. class GradientReversal[T] extends TensorModule[T]

    It is a simple module preserves the input, but takes the gradient from the subsequent layer, multiplies it by -lambda and passes it to the preceding layer.

  51. class Graph[T] extends Container[Activity, Activity, T]

    A graph container.

  52. class HardShrink[T] extends TensorModule[T]

    This is a transfer layer which applies the hard shrinkage function element-wise to the input Tensor.

  53. class HardTanh[T] extends TensorModule[T]

    Applies HardTanh to each element of input, HardTanh is defined: ⎧ maxValue, if x > maxValue f(x) = ⎨ minValue, if x < minValue ⎩ x, otherwise

  54. class HingeEmbeddingCriterion[T] extends TensorCriterion[T]

    Creates a criterion that measures the loss given an input x which is a 1-dimensional vector and a label y (1 or -1).

  55. class Identity[T] extends AbstractModule[Activity, Activity, T]

    Identity just return the input to output.

  56. class Index[T] extends AbstractModule[Table, Tensor[T], T]

    Applies the Tensor index operation along the given dimension.

  57. class InferReshape[T] extends TensorModule[T]

    Reshape the input tensor with automatic size inference support.

  58. trait InitializationMethod extends AnyRef

    Initialization method to initialize bias and weight.

  59. class Input[T] extends AbstractModule[Activity, Activity, T]

    Input layer do nothing to the input tensors, just pass them.

  60. class JoinTable[T] extends AbstractModule[Table, Tensor[_], T]

    It is a table module which takes a table of Tensors as input and outputs a Tensor by joining them together along the dimension dimension.

  61. class KLDCriterion[T] extends AbstractCriterion[Table, Tensor[T], T]

    Computes the KL-divergence of the Gaussian distribution.

  62. class L1Cost[T] extends TensorCriterion[T]

    compute L1 norm for input, and sign of input

  63. class L1HingeEmbeddingCriterion[T] extends AbstractCriterion[Table, Tensor[T], T]

    Creates a criterion that measures the loss given an input x = {x1, x2}, a table of two Tensors, and a label y (1 or -1):

  64. class L1Penalty[T] extends TensorModule[T]

    adds an L1 penalty to an input (for sparsity).

  65. class LSTM[T] extends Cell[T]

    Long Short Term Memory architecture.

  66. class LSTMPeephole[T] extends Cell[T]

    Long Short Term Memory architecture with peephole.

  67. class LeakyReLU[T] extends TensorModule[T]

    It is a transfer module that applies LeakyReLU, which parameter negval sets the slope of the negative part: LeakyReLU is defined as: f(x) = max(0, x) + negval * min(0, x)

  68. class Linear[T] extends TensorModule[T] with Initializable

    The Linear module applies a linear transformation to the input data, i.

  69. class Log[T] extends TensorModule[T]

    The Log module applies a log transformation to the input data

  70. class LogSigmoid[T] extends TensorModule[T]

    This class is a transform layer corresponding to the sigmoid function: f(x) = Log(1 / (1 + e ^^ (-x)))

  71. class LogSoftMax[T] extends TensorModule[T]

    The LogSoftMax module applies a LogSoftMax transformation to the input data which is defined as: f_i(x) = log(1 / a exp(x_i)) where a = sum_j[exp(x_j)]

  72. class LookupTable[T] extends TensorModule[T] with Initializable

    This layer is a particular case of a convolution, where the width of the convolution would be 1.

  73. class MM[T] extends AbstractModule[Table, Tensor[T], T]

    Module to perform matrix multiplication on two mini-batch inputs, producing a mini-batch.

  74. class MSECriterion[T] extends TensorCriterion[T]

    The mean squared error criterion e.

  75. class MV[T] extends AbstractModule[Table, Tensor[T], T]

    It is a module to perform matrix vector multiplication on two mini-batch inputs, producing a mini-batch.

  76. class MapTable[T] extends Container[Table, Table, T]

    This class is a container for a single module which will be applied to all input elements.

  77. class MarginCriterion[T] extends TensorCriterion[T]

    Creates a criterion that optimizes a two-class classification hinge loss (margin-based loss) between input x (a Tensor of dimension 1) and output y.

  78. class MarginRankingCriterion[T] extends AbstractCriterion[Table, Table, T]

    Creates a criterion that measures the loss given an input x = {x1, x2}, a table of two Tensors of size 1 (they contain only scalars), and a label y (1 or -1).

  79. class MaskedSelect[T] extends AbstractModule[Table, Tensor[T], T]

    Performs a torch.

  80. class Max[T] extends TensorModule[T]

    Applies a max operation over dimension dim

  81. class Mean[T, D] extends Sum[T, D]

    It is a simple layer which applies a mean operation over the given dimension.

  82. class Min[T] extends TensorModule[T]

    Applies a min operation over dimension dim.

  83. class MixtureTable[T] extends AbstractModule[Table, Tensor[T], T]

    Creates a module that takes a table {gater, experts} as input and outputs the mixture of experts (a Tensor or table of Tensors) using a gater Tensor.

  84. class Mul[T] extends TensorModule[T] with Initializable

    multiply a single scalar factor to the incoming data

  85. class MulConstant[T] extends TensorModule[T]

    Multiplies input Tensor by a (non-learnable) scalar constant.

  86. class MultiCriterion[T] extends AbstractCriterion[Activity, Activity, T]

    a weighted sum of other criterions each applied to the same input and target;

  87. class MultiLabelMarginCriterion[T] extends TensorCriterion[T]

    Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input x and output y (which is a Tensor of target class indices)

  88. class MultiLabelSoftMarginCriterion[T] extends TensorCriterion[T]

    A MultiLabel multiclass criterion based on sigmoid:

  89. class MultiMarginCriterion[T] extends TensorCriterion[T]

    Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x and output y (which is a target class index).

  90. class Narrow[T] extends TensorModule[T]

    Narrow is application of narrow operation in a module.

  91. class NarrowTable[T] extends AbstractModule[Table, Table, T]

    Creates a module that takes a table as input and outputs the subtable starting at index offset having length elements (defaults to 1 element).

  92. class Negative[T] extends AbstractModule[Tensor[_], Tensor[_], T]

    Computing negative value of each element of input tensor

  93. class Nms extends Serializable

    Non-Maximum Suppression (nms) for Object Detection The goal of nms is to solve the problem that groups of several detections near the real location, ideally obtaining only one detection per object

  94. class Normalize[T] extends TensorModule[T]

    Normalizes the input Tensor to have unit L_p norm.

  95. class PReLU[T] extends TensorModule[T] with Initializable

    Applies parametric ReLU, which parameter varies the slope of the negative part.

  96. class Pack[T] extends AbstractModule[Activity, Tensor[_], T]

    Stacks a list of n-dimensional tensors into one (n+1)-dimensional tensor.

  97. class Padding[T] extends TensorModule[T]

    This module adds pad units of padding to dimension dim of the input.

  98. class PairwiseDistance[T] extends AbstractModule[Table, Tensor[T], T]

    It is a module that takes a table of two vectors as input and outputs the distance between them using the p-norm.

  99. class ParallelCriterion[T] extends AbstractCriterion[Table, Table, T]

    ParallelCriterion is a weighted sum of other criterions each applied to a different input and target.

  100. class ParallelTable[T] extends Container[Table, Table, T]

    It is a container module that applies the i-th member module to the i-th input, and outputs an output in the form of Table

  101. class Power[T] extends TensorModule[T]

    Apply an element-wise power operation with scale and shift.

  102. class RReLU[T] extends TensorModule[T]

    Applies the randomized leaky rectified linear unit (RReLU) element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

  103. case class RandomNormal(mean: Double, stdv: Double) extends InitializationMethod with Product with Serializable

    Initializer that generates tensors with a normal distribution.

  104. case class RandomUniform(lower: Double, upper: Double) extends InitializationMethod with Product with Serializable

    Initializer that generates tensors with a uniform distribution.

  105. class ReLU[T] extends Threshold[T]

    Applies the rectified linear unit (ReLU) function element-wise to the input Tensor Thus the output is a Tensor of the same dimension ReLU function is defined as: f(x) = max(0, x)

  106. class ReLU6[T] extends HardTanh[T]

    Same as ReLU except that the rectifying function f(x) saturates at x = 6 ReLU6 is defined as: f(x) = min(max(0, x), 6)

  107. class Recurrent[T] extends Container[Tensor[T], Tensor[T], T]

    Recurrent module is a container of rnn cells Different types of rnn cells can be added using add() function

  108. class RecurrentDecoder[T] extends Recurrent[T]

    RecurrentDecoder module is a container of rnn cells that used to make a prediction of the next timestep based on the prediction we made from the previous timestep.

  109. class Replicate[T] extends TensorModule[T]

    Replicate repeats input nFeatures times along its dim dimension

  110. class Reshape[T] extends TensorModule[T]

    The forward(input) reshape the input tensor into a size(0) * size(1) * ... tensor, taking the elements row-wise.

  111. class ResizeBilinear[T] extends AbstractModule[Tensor[Float], Tensor[Float], T]

    Resize the input image with bilinear interpolation.

  112. class Reverse[T] extends TensorModule[T]

    Reverse the input w.

  113. class RnnCell[T] extends Cell[T]

    Implementation of vanilla recurrent neural network cell i2h: weight matrix of input to hidden units h2h: weight matrix of hidden units to themselves through time The updating is defined as: h_t = f(i2h * x_t + h2h * h_{t-1})

  114. class RoiPooling[T] extends AbstractModule[Table, Tensor[T], T]

    Region of interest pooling The RoIPooling uses max pooling to convert the features inside any valid region of interest into a small feature map with a fixed spatial extent of pooledH × pooledW (e.

  115. class Scale[T] extends AbstractModule[Tensor[T], Tensor[T], T]

    Scale is the combination of cmul and cadd Computes the elementwise product of input and weight, with the shape of the weight "expand" to match the shape of the input.

  116. class Select[T] extends TensorModule[T]

    A Simple layer selecting an index of the input tensor in the given dimension

  117. class SelectTable[T] extends AbstractModule[Table, Activity, T]

    Creates a module that takes a table as input and outputs the element at index index (positive or negative).

  118. class Sequential[T] extends Container[Activity, Activity, T]

    Sequential provides a means to plug layers together in a feed-forward fully connected manner.

  119. class Sigmoid[T] extends TensorModule[T]

    Applies the Sigmoid function element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

  120. class SmoothL1Criterion[T] extends TensorCriterion[T]

    Creates a criterion that can be thought of as a smooth version of the AbsCriterion.

  121. class SmoothL1CriterionWithWeights[T] extends AbstractCriterion[Tensor[T], Table, T]

    a smooth version of the AbsCriterion It uses a squared term if the absolute element-wise error falls below 1.

  122. class SoftMarginCriterion[T] extends TensorCriterion[T]

    Creates a criterion that optimizes a two-class classification logistic loss between input x (a Tensor of dimension 1) and output y (which is a tensor containing either 1s or -1s).

  123. class SoftMax[T] extends TensorModule[T]

    Applies the SoftMax function to an n-dimensional input Tensor, rescaling them so that the elements of the n-dimensional output Tensor lie in the range (0, 1) and sum to 1.

  124. class SoftMin[T] extends TensorModule[T]

    Applies the SoftMin function to an n-dimensional input Tensor, rescaling them so that the elements of the n-dimensional output Tensor lie in the range (0,1) and sum to 1.

  125. class SoftPlus[T] extends TensorModule[T]

    Apply the SoftPlus function to an n-dimensional input tensor.

  126. class SoftShrink[T] extends TensorModule[T]

    Apply the soft shrinkage function element-wise to the input Tensor

  127. class SoftSign[T] extends TensorModule[T]

    Apply SoftSign function to an n-dimensional input Tensor.

  128. class SoftmaxWithCriterion[T] extends TensorCriterion[T]

    Computes the multinomial logistic loss for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes.

  129. class SparseJoinTable[T] extends AbstractModule[Table, Tensor[T], T]

    :: Experimental ::

  130. class SparseLinear[T] extends Linear[T]

    SparseLinear is the sparse version of module Linear.

  131. class SpatialAveragePooling[T] extends TensorModule[T]

    Applies 2D average-pooling operation in kWxkH regions by step size dWxdH steps.

  132. class SpatialBatchNormalization[T] extends BatchNormalization[T]

    This file implements Batch Normalization as described in the paper: "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" by Sergey Ioffe, Christian Szegedy This implementation is useful for inputs coming from convolution layers.

  133. class SpatialContrastiveNormalization[T] extends TensorModule[T]

    Subtractive + divisive contrast normalization.

  134. class SpatialConvolution[T] extends TensorModule[T] with Initializable

    Applies a 2D convolution over an input image composed of several input planes.

  135. class SpatialConvolutionMap[T] extends TensorModule[T]

    This class is a generalization of SpatialConvolution.

  136. class SpatialCrossMapLRN[T] extends TensorModule[T]

    Applies Spatial Local Response Normalization between different feature maps.

  137. class SpatialDilatedConvolution[T] extends TensorModule[T] with Initializable

    Apply a 2D dilated convolution over an input image.

  138. class SpatialDivisiveNormalization[T] extends TensorModule[T]

    Applies a spatial division operation on a series of 2D inputs using kernel for computing the weighted average in a neighborhood.

  139. class SpatialFullConvolution[T] extends AbstractModule[Activity, Tensor[T], T] with Initializable

    Apply a 2D full convolution over an input image.

  140. class SpatialMaxPooling[T] extends TensorModule[T]

    Applies 2D max-pooling operation in kWxkH regions by step size dWxdH steps.

  141. class SpatialShareConvolution[T] extends SpatialConvolution[T]

    Annotations
    @SerialVersionUID( 4479683852714800631L )
  142. class SpatialSubtractiveNormalization[T] extends TensorModule[T]

    Applies a spatial subtraction operation on a series of 2D inputs using kernel for computing the weighted average in a neighborhood.

  143. class SpatialWithinChannelLRN[T] extends TensorModule[T]

    The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.

  144. class SpatialZeroPadding[T] extends TensorModule[T]

    Each feature map of a given input is padded with specified number of zeros.

  145. class SplitTable[T] extends AbstractModule[Tensor[T], Table, T]

    Creates a module that takes a Tensor as input and outputs several tables, splitting the Tensor along the specified dimension dimension.

  146. class Sqrt[T] extends Power[T]

    Apply an element-wise sqrt operation.

  147. class Square[T] extends Power[T]

    Apply an element-wise square operation.

  148. class Squeeze[T] extends AbstractModule[Tensor[_], Tensor[_], T]

    Delete all singleton dimensions or a specific singleton dimension.

  149. class Sum[T, D] extends AbstractModule[Tensor[D], Tensor[D], T]

    It is a simple layer which applies a sum operation over the given dimension.

  150. class Tanh[T] extends TensorModule[T]

    Applies the Tanh function element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

  151. class TanhShrink[T] extends TensorModule[T]

    A simple layer for each element of the input tensor, do the following operation during the forward process: [f(x) = tanh(x) - 1]

  152. class TemporalConvolution[T] extends TensorModule[T] with Initializable

    Applies a 1D convolution over an input sequence composed of nInputFrame frames.

  153. class TemporalMaxPooling[T] extends TensorModule[T]

    Applies 1D max-pooling operation in kW regions by step size dW steps.

  154. class TensorTree[T] extends Serializable

    TensorTree class is used to decode a tensor to a tree structure.

  155. class Threshold[T] extends TensorModule[T]

    Threshold input Tensor.

  156. class TimeDistributed[T] extends TensorModule[T]

    This layer is intended to apply contained layer to each temporal time slice of input tensor.

  157. class TimeDistributedCriterion[T] extends TensorCriterion[T]

    This class is intended to support inputs with 3 or more dimensions.

  158. class Transpose[T] extends AbstractModule[Tensor[_], Tensor[_], T]

    Transpose input along specified dimensions

  159. abstract class TreeLSTM[T] extends AbstractModule[Table, Tensor[T], T]

  160. class Unsqueeze[T] extends AbstractModule[Tensor[_], Tensor[_], T]

    Insert singleton dim (i.

  161. trait VariableFormat extends AnyRef

    VariableFormat describe the meaning of each dimension of the variable (the trainable parameters of a model like weight and bias) and can be used to return the fan in and fan out size of the variable when provided the variable shape.

  162. class View[T] extends TensorModule[T]

    This module creates a new view of the input tensor using the sizes passed to the constructor.

  163. class VolumetricConvolution[T] extends TensorModule[T] with Initializable

    Applies a 3D convolution over an input image composed of several input planes.

  164. class VolumetricFullConvolution[T] extends AbstractModule[Activity, Tensor[T], T] with Initializable

    Apply a 3D full convolution over an 3D input image, a sequence of images, or a video etc.

  165. class VolumetricMaxPooling[T] extends TensorModule[T]

    Applies 3D max-pooling operation in kTxkWxkH regions by step size dTxdWxdH.

Value Members

  1. object Abs extends Serializable

  2. object AbsCriterion extends Serializable

  3. object Add extends Serializable

  4. object AddConstant extends Serializable

  5. object BCECriterion extends Serializable

  6. object BatchNormalization extends ModuleSerializable with Serializable

  7. object BiRecurrent extends ContainerSerializable with Serializable

  8. object BifurcateSplitTable extends Serializable

  9. object Bilinear extends Serializable

  10. object BilinearFiller extends InitializationMethod with Product with Serializable

    Initialize the weight with coefficients for bilinear interpolation.

  11. object BinaryTreeLSTM extends ModuleSerializable with Serializable

  12. object Bottle extends Serializable

  13. object CAdd extends Serializable

  14. object CAddTable extends Serializable

  15. object CDivTable extends Serializable

  16. object CMaxTable extends Serializable

  17. object CMinTable extends Serializable

  18. object CMul extends Serializable

  19. object CMulTable extends Serializable

  20. object CSubTable extends Serializable

  21. object CellSerializer extends ModuleSerializable

  22. object Clamp extends Serializable

  23. object ClassNLLCriterion extends Serializable

  24. object ClassSimplexCriterion extends Serializable

  25. object Concat extends Serializable

  26. object ConcatTable extends Serializable

  27. object Contiguous extends Serializable

  28. object ConvLSTMPeephole extends Serializable

  29. object ConvLSTMPeephole3D extends Serializable

  30. object Cosine extends Serializable

  31. object CosineDistance extends Serializable

  32. object CosineDistanceCriterion extends Serializable

  33. object CosineEmbeddingCriterion extends Serializable

  34. object CrossEntropyCriterion extends Serializable

  35. object DenseToSparse extends Serializable

  36. object DiceCoefficientCriterion extends Serializable

  37. object DistKLDivCriterion extends Serializable

  38. object DotProduct extends Serializable

  39. object Dropout extends Serializable

  40. object ELU extends Serializable

  41. object Echo extends ModuleSerializable with Serializable

  42. object ErrorInfo

  43. object Euclidean extends Serializable

  44. object Exp extends Serializable

  45. object FlattenTable extends Serializable

  46. object GRU extends Serializable

  47. object GaussianCriterion extends Serializable

  48. object GaussianSampler extends Serializable

  49. object GradientReversal extends Serializable

  50. object Graph extends ContainerSerializable with Serializable

  51. object HardShrink extends Serializable

  52. object HardTanh extends Serializable

  53. object HingeEmbeddingCriterion extends Serializable

  54. object Identity extends Serializable

  55. object Index extends Serializable

  56. object InferReshape extends Serializable

  57. object Input extends Serializable

  58. object JoinTable extends Serializable

  59. object KLDCriterion extends Serializable

  60. object L1Cost extends Serializable

  61. object L1HingeEmbeddingCriterion extends Serializable

  62. object L1Penalty extends Serializable

  63. object LSTM extends Serializable

  64. object LSTMPeephole extends Serializable

  65. object LeakyReLU extends Serializable

  66. object Linear extends Quantizable with Serializable

  67. object Log extends Serializable

  68. object LogSigmoid extends Serializable

  69. object LogSoftMax extends Serializable

  70. object LookupTable extends Serializable

  71. object MM extends Serializable

  72. object MSECriterion extends Serializable

  73. object MV extends Serializable

  74. object MapTable extends ContainerSerializable with Serializable

  75. object MarginCriterion extends Serializable

  76. object MarginRankingCriterion extends Serializable

  77. object MaskedSelect extends ModuleSerializable with Serializable

  78. object Max extends Serializable

  79. object Mean extends Serializable

  80. object Min extends Serializable

  81. object MixtureTable extends Serializable

  82. object Module

  83. object Mul extends Serializable

  84. object MulConstant extends Serializable

  85. object MultiCriterion extends Serializable

  86. object MultiLabelMarginCriterion extends Serializable

  87. object MultiLabelSoftMarginCriterion extends Serializable

  88. object MultiMarginCriterion extends Serializable

  89. object Narrow extends Serializable

  90. object NarrowTable extends Serializable

  91. object Negative extends Serializable

  92. object NormMode extends Enumeration

  93. object Normalize extends Serializable

  94. object Ones extends InitializationMethod with Product with Serializable

    Initializer that generates tensors with zeros.

  95. object PReLU extends Serializable

  96. object Pack extends Serializable

  97. object Padding extends Serializable

  98. object PairwiseDistance extends Serializable

  99. object ParallelCriterion extends Serializable

  100. object ParallelTable extends Serializable

  101. object Power extends Serializable

  102. object RReLU extends Serializable

  103. object RandomUniform extends InitializationMethod with Product with Serializable

    Initializer that generates tensors with a uniform distribution.

  104. object ReLU extends Serializable

  105. object ReLU6 extends Serializable

  106. object Recurrent extends ContainerSerializable with Serializable

  107. object RecurrentDecoder extends ContainerSerializable with Serializable

  108. object Replicate extends Serializable

  109. object Reshape extends ModuleSerializable with Serializable

  110. object ResizeBilinear extends Serializable

  111. object Reverse extends Serializable

  112. object RnnCell extends Serializable

  113. object RoiPooling extends Serializable

  114. object Scale extends ModuleSerializable with Serializable

  115. object Select extends Serializable

  116. object SelectTable extends Serializable

  117. object Sequential extends Serializable

  118. object Sigmoid extends Serializable

  119. object SmoothL1Criterion extends Serializable

  120. object SmoothL1CriterionWithWeights extends Serializable

  121. object SoftMarginCriterion extends Serializable

  122. object SoftMax extends Serializable

  123. object SoftMin extends Serializable

  124. object SoftPlus extends Serializable

  125. object SoftShrink extends Serializable

  126. object SoftSign extends Serializable

  127. object SoftmaxWithCriterion extends Serializable

  128. object SparseJoinTable extends Serializable

  129. object SparseLinear extends Serializable

  130. object SpatialAveragePooling extends Serializable

  131. object SpatialBatchNormalization extends Serializable

  132. object SpatialContrastiveNormalization extends ModuleSerializable with Serializable

  133. object SpatialConvolution extends Quantizable with Serializable

  134. object SpatialConvolutionMap extends Serializable

  135. object SpatialCrossMapLRN extends Serializable

  136. object SpatialDilatedConvolution extends Quantizable with Serializable

  137. object SpatialDivisiveNormalization extends ModuleSerializable with Serializable

  138. object SpatialFullConvolution extends ModuleSerializable with Serializable

  139. object SpatialMaxPooling extends ModuleSerializable with Serializable

  140. object SpatialShareConvolution extends Serializable

  141. object SpatialSubtractiveNormalization extends ModuleSerializable with Serializable

  142. object SpatialWithinChannelLRN extends Serializable

  143. object SpatialZeroPadding extends Serializable

  144. object SplitTable extends Serializable

  145. object Sqrt extends Serializable

  146. object Square extends Serializable

  147. object Squeeze extends Serializable

  148. object Sum extends Serializable

  149. object Tanh extends Serializable

  150. object TanhShrink extends Serializable

  151. object TemporalConvolution extends Serializable

  152. object TemporalMaxPooling extends Serializable

  153. object Threshold extends Serializable

  154. object TimeDistributed extends Serializable

  155. object TimeDistributedCriterion extends Serializable

  156. object Transpose extends ModuleSerializable with Serializable

  157. object Unsqueeze extends Serializable

  158. object Utils

  159. object VariableFormat

  160. object View extends Serializable

  161. object VolumetricConvolution extends Serializable

  162. object VolumetricFullConvolution extends Serializable

  163. object VolumetricMaxPooling extends ModuleSerializable with Serializable

  164. object Xavier extends InitializationMethod with Product with Serializable

    In short, it helps signals reach deep into the network.

  165. object Zeros extends InitializationMethod with Product with Serializable

    Initializer that generates tensors with zeros.

  166. package abstractnn

  167. package ops

  168. package quantized

  169. package tf

Ungrouped