com.intel.analytics.bigdl.nn

BatchNormalization

class BatchNormalization[T] extends TensorModule[T] with Initializable

This layer implements Batch Normalization as described in the paper: "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" by Sergey Ioffe, Christian Szegedy https://arxiv.org/abs/1502.03167

This implementation is useful for inputs NOT coming from convolution layers. For convolution layers, use nn.SpatialBatchNormalization.

The operation implemented is: ( x - mean(x) ) y = -------------------- * gamma + beta standard-deviation(x) where gamma and beta are learnable parameters.The learning of gamma and beta is optional.

T

numeric type

Annotations
@SerialVersionUID( 3181824540272906068L )
Linear Supertypes
Initializable, TensorModule[T], AbstractModule[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. BatchNormalization
  2. Initializable
  3. TensorModule
  4. AbstractModule
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BatchNormalization(nOutput: Int, eps: Double = 1.0E-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: Tensor[T] = null, initBias: Tensor[T] = null, initGradWeight: Tensor[T] = null, initGradBias: Tensor[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    nOutput

    output feature map number

    eps

    avoid divide zero

    momentum

    momentum for weight update

    affine

    affine operation on output or not

    ev

    numeric operator

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val _gradOutput: Tensor[T]

    Attributes
    protected
  7. val _input: Tensor[T]

    Attributes
    protected
  8. def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput

    Definition Classes
    BatchNormalizationAbstractModule
  9. val affine: Boolean

    affine operation on output or not

  10. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    name
    returns

    Definition Classes
    AbstractModule
  11. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  12. def backward(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  13. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  14. val bias: Tensor[T]

  15. var biasInitMethod: InitializationMethod

    Attributes
    protected
    Definition Classes
    Initializable
  16. def canEqual(other: Any): Boolean

    Definition Classes
    BatchNormalizationAbstractModule
  17. val channelDim: Int

  18. def checkEngineType(): BatchNormalization.this.type

    get execution engine type

    get execution engine type

    Definition Classes
    AbstractModule
  19. def checkInputDim(input: Tensor[T]): Unit

    Attributes
    protected
    Annotations
    @inline()
  20. def clearState(): BatchNormalization.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    BatchNormalizationAbstractModule
  21. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. def cloneModule(): AbstractModule[Tensor[T], Tensor[T], T]

    Definition Classes
    AbstractModule
  23. val eps: Double

    avoid divide zero

  24. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  25. def equals(other: Any): Boolean

    Definition Classes
    BatchNormalizationAbstractModule → AnyRef → Any
  26. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Definition Classes
    AbstractModule
  27. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    returns

    Definition Classes
    AbstractModule
  28. def evaluate(): BatchNormalization.this.type

    Definition Classes
    AbstractModule
  29. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  30. final def forward(input: Tensor[T]): Tensor[T]

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  31. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  32. def freeze(names: String*): BatchNormalization.this.type

    freeze the module, i.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    AbstractModule
  33. val gMean: Tensor[T]

    Attributes
    protected
  34. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  35. def getClassTagNumerics(): (Array[ClassTag[_]], Array[TensorNumeric[_]])

    Definition Classes
    AbstractModule
  36. def getExtraParameter(): Array[Tensor[T]]

    Get extra parameter in this module.

    Get extra parameter in this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    The subclass should override this method if it has some parameters besides weight and bias.

    returns

    an array of tensor

    Definition Classes
    BatchNormalizationAbstractModule
  37. def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  38. def getNamePostfix: String

    Definition Classes
    AbstractModule
  39. def getNumericType(): TensorDataType

    returns

    Float or Double

    Definition Classes
    AbstractModule
  40. def getParameters(): (Tensor[T], Tensor[T])

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    returns

    Definition Classes
    AbstractModule
  41. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    BatchNormalizationAbstractModule
  42. def getPrintName(): String

    Attributes
    protected
    Definition Classes
    AbstractModule
  43. def getScaleB(): Double

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  44. def getScaleW(): Double

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  45. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Definition Classes
    AbstractModule
  46. def getWeightsBias(): Array[Tensor[T]]

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  47. val gradBias: Tensor[T]

  48. var gradInput: Tensor[T]

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  49. val gradWeight: Tensor[T]

  50. val gxMean: Tensor[T]

    Attributes
    protected
  51. def hasName: Boolean

    Definition Classes
    AbstractModule
  52. def hashCode(): Int

    Definition Classes
    BatchNormalizationAbstractModule → AnyRef → Any
  53. def initializeBuffer(channels: Int): Unit

    Attributes
    protected
    Annotations
    @inline()
  54. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  55. def inputs(nodes: Array[ModuleNode[T]]): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes in an array

    returns

    node containing current module

    Definition Classes
    AbstractModule
  56. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  57. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  58. final def isTraining(): Boolean

    Definition Classes
    AbstractModule
  59. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  60. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): BatchNormalization.this.type

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  61. def loadWeights(weightPath: String, matchAll: Boolean = true): BatchNormalization.this.type

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  62. def makeBatch(input: Tensor[T]): Tensor[T]

    Attributes
    protected
    Annotations
    @inline()
  63. val momentum: Double

    momentum for weight update

  64. val nDim: Int

  65. val nOutput: Int

    output feature map number

  66. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  67. var needFix: Boolean

    Attributes
    protected
  68. final def notify(): Unit

    Definition Classes
    AnyRef
  69. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  70. var output: Tensor[T]

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  71. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    BatchNormalizationAbstractModule
  72. def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  73. def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  74. def predictImage(imageFrame: ImageFrame, outputLayer: String = null, shareBuffer: Boolean = false, batchPerPartition: Int = 4, predictKey: String = ImageFeature.predict): ImageFrame

    model predict images, return imageFrame with predicted tensor

    model predict images, return imageFrame with predicted tensor

    imageFrame

    imageFrame that contains images

    outputLayer

    if outputLayer is not null, the output of layer that matches outputLayer will be used as predicted output

    shareBuffer

    whether to share same memory for each batch predict results

    batchPerPartition

    batch size per partition, default is 4

    predictKey

    key to store predicted result

    returns

    Definition Classes
    AbstractModule
  75. def quantize(): Module[T]

    Definition Classes
    AbstractModule
  76. def reset(): Unit

  77. def resetTimes(): Unit

    Definition Classes
    AbstractModule
  78. var runningMean: Tensor[T]

  79. var runningVar: Tensor[T]

  80. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): BatchNormalization.this.type

    Definition Classes
    AbstractModule
  81. def saveDefinition(path: String, overWrite: Boolean = false): BatchNormalization.this.type

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  82. var saveMean: Tensor[T]

  83. def saveModule(path: String, weightPath: String = null, overWrite: Boolean = false): BatchNormalization.this.type

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    where to store weight

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  84. var saveStd: Tensor[T]

  85. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): BatchNormalization.this.type

    Definition Classes
    AbstractModule
  86. def saveTorch(path: String, overWrite: Boolean = false): BatchNormalization.this.type

    Definition Classes
    AbstractModule
  87. def saveWeights(path: String, overWrite: Boolean): Unit

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  88. var scaleB: Double

    Attributes
    protected
    Definition Classes
    AbstractModule
  89. var scaleW: Double

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  90. def setExtraParameter(extraParam: Array[Tensor[T]]): BatchNormalization.this.type

    Set extra parameter to this module.

    Set extra parameter to this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    returns

    this

    Definition Classes
    AbstractModule
  91. def setInit(status: Boolean = true): BatchNormalization.this.type

    Annotations
    @inline()
  92. def setInitMethod(weightInitMethod: InitializationMethod = null, biasInitMethod: InitializationMethod = null): BatchNormalization.this.type

    Definition Classes
    Initializable
  93. def setLine(line: String): BatchNormalization.this.type

    Definition Classes
    AbstractModule
  94. def setName(name: String): BatchNormalization.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  95. def setNamePostfix(namePostfix: String): Unit

    Definition Classes
    AbstractModule
  96. def setScaleB(b: Double): BatchNormalization.this.type

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  97. def setScaleW(w: Double): BatchNormalization.this.type

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  98. def setWeightsBias(newWeights: Array[Tensor[T]]): BatchNormalization.this.type

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    returns

    Definition Classes
    AbstractModule
  99. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  100. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Generate graph module with start nodes

    Generate graph module with start nodes

    startNodes
    returns

    Definition Classes
    AbstractModule
  101. def toString(): String

    Definition Classes
    BatchNormalizationAbstractModule → AnyRef → Any
  102. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  103. def training(): BatchNormalization.this.type

    Definition Classes
    AbstractModule
  104. def unFreeze(names: String*): BatchNormalization.this.type

    "unfreeze" module, i.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    AbstractModule
  105. def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    BatchNormalizationAbstractModule
  106. def updateOutput(input: Tensor[T]): Tensor[T]

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    BatchNormalizationAbstractModule
  107. def updateParameters(learningRate: T): Unit

    Definition Classes
    AbstractModule
  108. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  109. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  110. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  111. val weight: Tensor[T]

  112. var weightInitMethod: InitializationMethod

    Attributes
    protected
    Definition Classes
    Initializable
  113. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    BatchNormalizationAbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): BatchNormalization.this.type

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    please use recommended saveModule(path, overWrite)

Inherited from Initializable

Inherited from TensorModule[T]

Inherited from AbstractModule[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped