com.intel.analytics.bigdl.python.api

PythonBigDL

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

  7. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def createAbs(): Abs[T]

  12. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

  13. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

  14. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

  15. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

  16. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

  17. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

  18. def createAdd(inputSize: Int): Add[T]

  19. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

  20. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

  21. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

  22. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

  23. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

  24. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

  25. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

  26. def createBilinearFiller(): BilinearFiller.type

  27. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

  28. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

  29. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

  30. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

  31. def createBytesToMat(byteKey: String): BytesToMat

  32. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

  33. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

  34. def createCAveTable(inplace: Boolean = false): CAveTable[T]

  35. def createCDivTable(): CDivTable[T]

  36. def createCMaxTable(): CMaxTable[T]

  37. def createCMinTable(): CMinTable[T]

  38. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

  39. def createCMulTable(): CMulTable[T]

  40. def createCSubTable(): CSubTable[T]

  41. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

  42. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

  43. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

  44. def createChannelOrder(): ChannelOrder

  45. def createClamp(min: Int, max: Int): Clamp[T]

  46. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

  47. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

  48. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

  49. def createConcat(dimension: Int): Concat[T]

  50. def createConcatTable(): ConcatTable[T]

  51. def createConstInitMethod(value: Double): ConstInitMethod

  52. def createContiguous(): Contiguous[T]

  53. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

  54. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

  55. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

  56. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

  57. def createCosineDistance(): CosineDistance[T]

  58. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

  59. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

  60. def createCosineProximityCriterion(): CosineProximityCriterion[T]

  61. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

  62. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

  63. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

  64. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

  65. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

  66. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  67. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

  68. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

  69. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

  70. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

  71. def createDefault(): Default

  72. def createDenseToSparse(): DenseToSparse[T]

  73. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

  74. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

  75. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

  76. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

  77. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

  78. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  79. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  80. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

  81. def createDotProduct(): DotProduct[T]

  82. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

  83. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

  84. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

  85. def createEcho(): Echo[T]

  86. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

  87. def createEveryEpoch(): Trigger

  88. def createExp(): Exp[T]

  89. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

  90. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

  91. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

  92. def createFixExpand(eh: Int, ew: Int): FixExpand

  93. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

  94. def createFlattenTable(): FlattenTable[T]

  95. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

  96. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

  97. def createGaussianCriterion(): GaussianCriterion[T]

  98. def createGaussianDropout(rate: Double): GaussianDropout[T]

  99. def createGaussianNoise(stddev: Double): GaussianNoise[T]

  100. def createGaussianSampler(): GaussianSampler[T]

  101. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

  102. def createHFlip(): HFlip

  103. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

  104. def createHardSigmoid: HardSigmoid[T]

  105. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

  106. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

  107. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

  108. def createHue(deltaLow: Double, deltaHigh: Double): Hue

  109. def createIdentity(): Identity[T]

  110. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

  111. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

  112. def createIndex(dimension: Int): Index[T]

  113. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

  114. def createInput(): ModuleNode[T]

  115. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

  116. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

  117. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

  118. def createL1Cost(): L1Cost[T]

  119. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

  120. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

  121. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

  122. def createL1Regularizer(l1: Double): L1Regularizer[T]

  123. def createL2Regularizer(l2: Double): L2Regularizer[T]

  124. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

  125. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

  126. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

  127. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

  128. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

  129. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

  130. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

  131. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

  132. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

  133. def createLog(): Log[T]

  134. def createLogSigmoid(): LogSigmoid[T]

  135. def createLogSoftMax(): LogSoftMax[T]

  136. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

  137. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

  138. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

  139. def createMAE(): ValidationMethod[T]

  140. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

  141. def createMSECriterion: MSECriterion[T]

  142. def createMV(trans: Boolean = false): MV[T]

  143. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

  144. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

  145. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

  146. def createMaskedSelect(): MaskedSelect[T]

  147. def createMasking(maskValue: Double): Masking[T]

  148. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

  149. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

  150. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

  151. def createMaxEpoch(max: Int): Trigger

  152. def createMaxIteration(max: Int): Trigger

  153. def createMaxScore(max: Float): Trigger

  154. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

  155. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

  156. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

  157. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

  158. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

  159. def createMinLoss(min: Float): Trigger

  160. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

  161. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

  162. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

  163. def createMul(): Mul[T]

  164. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

  165. def createMultiCriterion(): MultiCriterion[T]

  166. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

  167. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

  168. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

  169. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

  170. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

  171. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

  172. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

  173. def createNegative(inplace: Boolean): Negative[T]

  174. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

  175. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

  176. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

  177. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

  178. def createOnes(): Ones.type

  179. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

  180. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

  181. def createPack(dimension: Int): Pack[T]

  182. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

  183. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

  184. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

  185. def createParallelTable(): ParallelTable[T]

  186. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

  187. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

  188. def createPixelNormalize(means: List[Double]): PixelNormalizer

  189. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

  190. def createPoissonCriterion: PoissonCriterion[T]

  191. def createPoly(power: Double, maxIteration: Int): Poly

  192. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

  193. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

  194. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

  195. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

  196. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

  197. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

  198. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

  199. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

  200. def createRandomSampler(): FeatureTransformer

  201. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

  202. def createRandomUniform(): InitializationMethod

  203. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

  204. def createReLU(ip: Boolean = false): ReLU[T]

  205. def createReLU6(inplace: Boolean = false): ReLU6[T]

  206. def createRecurrent(): Recurrent[T]

  207. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

  208. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

  209. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

  210. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

  211. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

  212. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

  213. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

  214. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

  215. def createRoiNormalize(): RoiNormalize

  216. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

  217. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

  218. def createRoiResize(normalized: Boolean): RoiResize

  219. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

  220. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

  221. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

  222. def createScale(size: List[Int]): Scale[T]

  223. def createSelect(dimension: Int, index: Int): Select[T]

  224. def createSelectTable(dimension: Int): SelectTable[T]

  225. def createSequential(): Container[Activity, Activity, T]

  226. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

  227. def createSeveralIteration(interval: Int): Trigger

  228. def createSigmoid(): Sigmoid[T]

  229. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

  230. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

  231. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

  232. def createSoftMax(): SoftMax[T]

  233. def createSoftMin(): SoftMin[T]

  234. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

  235. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

  236. def createSoftSign(): SoftSign[T]

  237. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

  238. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

  239. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

  240. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

  241. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

  242. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

  243. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

  244. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

  245. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

  246. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

  247. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

  248. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

  249. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

  250. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

  251. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

  252. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

  253. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

  254. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

  255. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

  256. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

  257. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

  258. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

  259. def createSqrt(): Sqrt[T]

  260. def createSquare(): Square[T]

  261. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

  262. def createStep(stepSize: Int, gamma: Double): Step

  263. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

  264. def createTanh(): Tanh[T]

  265. def createTanhShrink(): TanhShrink[T]

  266. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

  267. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

  268. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

  269. def createTile(dim: Int, copies: Int): Tile[T]

  270. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

  271. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

  272. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

  273. def createTop1Accuracy(): ValidationMethod[T]

  274. def createTop5Accuracy(): ValidationMethod[T]

  275. def createTrainSummary(logDir: String, appName: String): TrainSummary

  276. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

  277. def createTranspose(permutations: List[List[Int]]): Transpose[T]

  278. def createTreeNNAccuracy(): ValidationMethod[T]

  279. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

  280. def createUpSampling1D(length: Int): UpSampling1D[T]

  281. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

  282. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

  283. def createValidationSummary(logDir: String, appName: String): ValidationSummary

  284. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

  285. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

  286. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

  287. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

  288. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

  289. def createWarmup(delta: Double): Warmup

  290. def createXavier(): Xavier.type

  291. def createZeros(): Zeros.type

  292. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

  293. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

  294. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

  295. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

  296. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

  297. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

  298. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

  299. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

  300. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

  301. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

  302. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

  303. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

  304. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

  305. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  306. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  307. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

  308. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

  309. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  310. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

  311. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

  312. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

  313. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

  314. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  315. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

  316. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

  317. def getHiddenState(rec: Recurrent[T]): JActivity

  318. def getNodeAndCoreNumber(): Array[Int]

  319. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

  320. def getRunningMean(module: BatchNormalization[T]): JTensor

  321. def getRunningStd(module: BatchNormalization[T]): JTensor

  322. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

  323. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  324. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

  325. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

  326. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

  327. def initEngine(): Unit

  328. def isDistributed(imageFrame: ImageFrame): Boolean

  329. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  330. def isLocal(imageFrame: ImageFrame): Boolean

  331. def isWithWeights(module: Module[T]): Boolean

  332. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

  333. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

  334. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

  335. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

  336. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

  337. def loadOptimMethod(path: String): OptimMethod[T]

  338. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

  339. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

  340. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

  341. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

  342. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

  343. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

  344. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

  345. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

  346. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

  347. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

  348. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

  349. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

  350. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

  351. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

  352. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

  353. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

  354. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  355. final def notify(): Unit

    Definition Classes
    AnyRef
  356. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  357. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

  358. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

  359. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

  360. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

  361. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

  362. def redirectSparkLogs(logPath: String): Unit

  363. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

  364. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

  365. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

  366. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

  367. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

  368. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

  369. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

  370. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

  371. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

  372. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

  373. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

  374. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

  375. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

  376. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

  377. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  378. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

  379. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

  380. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

  381. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

  382. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

  383. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

  384. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

  385. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

  386. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

  387. def setModelSeed(seed: Long): Unit

  388. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

  389. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

  390. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

  391. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

  392. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

  393. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

  394. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

  395. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

  396. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

  397. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

  398. def showBigDlInfoLogs(): Unit

  399. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

  400. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

  401. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  402. def testSample(sample: Sample): Sample

  403. def testTensor(jTensor: JTensor): JTensor

  404. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

  405. def toJSample(record: Sample): dataset.Sample[T]

  406. def toJTensor(tensor: Tensor[T]): JTensor

  407. def toPySample(sample: dataset.Sample[T]): Sample

  408. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

  409. def toString(): String

    Definition Classes
    AnyRef → Any
  410. def toTensor(jTensor: JTensor): Tensor[T]

  411. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

  412. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

  413. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

  414. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

  415. def uniform(a: Double, b: Double, size: List[Int]): JTensor

  416. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

  417. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  418. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  419. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  420. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped