com.intel.analytics.bigdl.python.api

PythonBigDLValidator

class PythonBigDLValidator[T] extends PythonBigDL[T]

Linear Supertypes
PythonBigDL[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDLValidator
  2. PythonBigDL
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDLValidator()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Definition Classes
    PythonBigDL
  7. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

    Definition Classes
    PythonBigDL
  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Definition Classes
    PythonBigDL
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def createAbs(): Abs[T]

    Definition Classes
    PythonBigDL
  12. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Definition Classes
    PythonBigDL
  13. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Definition Classes
    PythonBigDL
  14. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Definition Classes
    PythonBigDL
  15. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Definition Classes
    PythonBigDL
  16. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Definition Classes
    PythonBigDL
  17. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Definition Classes
    PythonBigDL
  18. def createAdd(inputSize: Int): Add[T]

    Definition Classes
    PythonBigDL
  19. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Definition Classes
    PythonBigDL
  20. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

    Definition Classes
    PythonBigDL
  21. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Definition Classes
    PythonBigDL
  22. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Definition Classes
    PythonBigDL
  23. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Definition Classes
    PythonBigDL
  24. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Definition Classes
    PythonBigDL
  25. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Definition Classes
    PythonBigDL
  26. def createBilinearFiller(): BilinearFiller.type

    Definition Classes
    PythonBigDL
  27. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Definition Classes
    PythonBigDL
  28. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Definition Classes
    PythonBigDL
  29. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Definition Classes
    PythonBigDL
  30. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Definition Classes
    PythonBigDL
  31. def createBytesToMat(byteKey: String): BytesToMat

    Definition Classes
    PythonBigDL
  32. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Definition Classes
    PythonBigDL
  33. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

    Definition Classes
    PythonBigDL
  34. def createCAveTable(inplace: Boolean = false): CAveTable[T]

    Definition Classes
    PythonBigDL
  35. def createCDivTable(): CDivTable[T]

    Definition Classes
    PythonBigDL
  36. def createCMaxTable(): CMaxTable[T]

    Definition Classes
    PythonBigDL
  37. def createCMinTable(): CMinTable[T]

    Definition Classes
    PythonBigDL
  38. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Definition Classes
    PythonBigDL
  39. def createCMulTable(): CMulTable[T]

    Definition Classes
    PythonBigDL
  40. def createCSubTable(): CSubTable[T]

    Definition Classes
    PythonBigDL
  41. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Definition Classes
    PythonBigDL
  42. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Definition Classes
    PythonBigDL
  43. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

    Definition Classes
    PythonBigDL
  44. def createChannelOrder(): ChannelOrder

    Definition Classes
    PythonBigDL
  45. def createClamp(min: Int, max: Int): Clamp[T]

    Definition Classes
    PythonBigDL
  46. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

    Definition Classes
    PythonBigDL
  47. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Definition Classes
    PythonBigDL
  48. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

    Definition Classes
    PythonBigDL
  49. def createConcat(dimension: Int): Concat[T]

    Definition Classes
    PythonBigDL
  50. def createConcatTable(): ConcatTable[T]

    Definition Classes
    PythonBigDL
  51. def createConstInitMethod(value: Double): ConstInitMethod

    Definition Classes
    PythonBigDL
  52. def createContiguous(): Contiguous[T]

    Definition Classes
    PythonBigDL
  53. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Definition Classes
    PythonBigDL
  54. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Definition Classes
    PythonBigDL
  55. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Definition Classes
    PythonBigDL
  56. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Definition Classes
    PythonBigDL
  57. def createCosineDistance(): CosineDistance[T]

    Definition Classes
    PythonBigDL
  58. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Definition Classes
    PythonBigDL
  59. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  60. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Definition Classes
    PythonBigDL
  61. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

    Definition Classes
    PythonBigDL
  62. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

    Definition Classes
    PythonBigDL
  63. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Definition Classes
    PythonBigDL
  64. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

    Definition Classes
    PythonBigDL
  65. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Definition Classes
    PythonBigDL
  66. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  67. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Definition Classes
    PythonBigDL
  68. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

    Definition Classes
    PythonBigDL
  69. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Definition Classes
    PythonBigDL
  70. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

    Definition Classes
    PythonBigDL
  71. def createDefault(): Default

    Definition Classes
    PythonBigDL
  72. def createDenseToSparse(): DenseToSparse[T]

    Definition Classes
    PythonBigDL
  73. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Definition Classes
    PythonBigDL
  74. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

    Definition Classes
    PythonBigDL
  75. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Definition Classes
    PythonBigDL
  76. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Definition Classes
    PythonBigDL
  77. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Definition Classes
    PythonBigDL
  78. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  79. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  80. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Definition Classes
    PythonBigDL
  81. def createDotProduct(): DotProduct[T]

    Definition Classes
    PythonBigDL
  82. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

    Definition Classes
    PythonBigDL
  83. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Definition Classes
    PythonBigDL
  84. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

    Definition Classes
    PythonBigDL
  85. def createEcho(): Echo[T]

    Definition Classes
    PythonBigDL
  86. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Definition Classes
    PythonBigDL
  87. def createEveryEpoch(): Trigger

    Definition Classes
    PythonBigDL
  88. def createExp(): Exp[T]

    Definition Classes
    PythonBigDL
  89. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

    Definition Classes
    PythonBigDL
  90. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Definition Classes
    PythonBigDL
  91. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

    Definition Classes
    PythonBigDL
  92. def createFixExpand(eh: Int, ew: Int): FixExpand

    Definition Classes
    PythonBigDL
  93. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Definition Classes
    PythonBigDL
  94. def createFlattenTable(): FlattenTable[T]

    Definition Classes
    PythonBigDL
  95. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

    Definition Classes
    PythonBigDL
  96. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Definition Classes
    PythonBigDL
  97. def createGaussianCriterion(): GaussianCriterion[T]

    Definition Classes
    PythonBigDL
  98. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Definition Classes
    PythonBigDL
  99. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Definition Classes
    PythonBigDL
  100. def createGaussianSampler(): GaussianSampler[T]

    Definition Classes
    PythonBigDL
  101. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Definition Classes
    PythonBigDL
  102. def createHFlip(): HFlip

    Definition Classes
    PythonBigDL
  103. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Definition Classes
    PythonBigDL
  104. def createHardSigmoid: HardSigmoid[T]

    Definition Classes
    PythonBigDL
  105. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

    Definition Classes
    PythonBigDL
  106. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

    Definition Classes
    PythonBigDL
  107. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  108. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Definition Classes
    PythonBigDL
  109. def createIdentity(): Identity[T]

    Definition Classes
    PythonBigDL
  110. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

    Definition Classes
    PythonBigDL
  111. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Definition Classes
    PythonBigDL
  112. def createIndex(dimension: Int): Index[T]

    Definition Classes
    PythonBigDL
  113. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Definition Classes
    PythonBigDL
  114. def createInput(): ModuleNode[T]

    Definition Classes
    PythonBigDL
  115. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Definition Classes
    PythonBigDL
  116. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

    Definition Classes
    PythonBigDL
  117. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Definition Classes
    PythonBigDL
  118. def createL1Cost(): L1Cost[T]

    Definition Classes
    PythonBigDL
  119. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  120. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Definition Classes
    PythonBigDL
  121. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Definition Classes
    PythonBigDL
  122. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Definition Classes
    PythonBigDL
  123. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Definition Classes
    PythonBigDL
  124. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Definition Classes
    PythonBigDL
  125. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Definition Classes
    PythonBigDL
  126. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Definition Classes
    PythonBigDL
  127. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Definition Classes
    PythonBigDL
  128. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Definition Classes
    PythonBigDL
  129. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Definition Classes
    PythonBigDL
  130. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  131. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

    Definition Classes
    PythonBigDL
  132. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

    Definition Classes
    PythonBigDL
  133. def createLog(): Log[T]

    Definition Classes
    PythonBigDL
  134. def createLogSigmoid(): LogSigmoid[T]

    Definition Classes
    PythonBigDL
  135. def createLogSoftMax(): LogSoftMax[T]

    Definition Classes
    PythonBigDL
  136. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Definition Classes
    PythonBigDL
  137. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

    Definition Classes
    PythonBigDL
  138. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  139. def createMAE(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  140. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Definition Classes
    PythonBigDL
  141. def createMSECriterion: MSECriterion[T]

    Definition Classes
    PythonBigDL
  142. def createMV(trans: Boolean = false): MV[T]

    Definition Classes
    PythonBigDL
  143. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Definition Classes
    PythonBigDL
  144. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

    Definition Classes
    PythonBigDL
  145. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Definition Classes
    PythonBigDL
  146. def createMaskedSelect(): MaskedSelect[T]

    Definition Classes
    PythonBigDL
  147. def createMasking(maskValue: Double): Masking[T]

    Definition Classes
    PythonBigDL
  148. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

    Definition Classes
    PythonBigDL
  149. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

    Definition Classes
    PythonBigDL
  150. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Definition Classes
    PythonBigDL
  151. def createMaxEpoch(max: Int): Trigger

    Definition Classes
    PythonBigDL
  152. def createMaxIteration(max: Int): Trigger

    Definition Classes
    PythonBigDL
  153. def createMaxScore(max: Float): Trigger

    Definition Classes
    PythonBigDL
  154. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

    Definition Classes
    PythonBigDL
  155. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

    Definition Classes
    PythonBigDL
  156. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Definition Classes
    PythonBigDL
  157. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Definition Classes
    PythonBigDL
  158. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Definition Classes
    PythonBigDL
  159. def createMinLoss(min: Float): Trigger

    Definition Classes
    PythonBigDL
  160. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Definition Classes
    PythonBigDL
  161. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Definition Classes
    PythonBigDL
  162. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

    Definition Classes
    PythonBigDL
  163. def createMul(): Mul[T]

    Definition Classes
    PythonBigDL
  164. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Definition Classes
    PythonBigDL
  165. def createMultiCriterion(): MultiCriterion[T]

    Definition Classes
    PythonBigDL
  166. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Definition Classes
    PythonBigDL
  167. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Definition Classes
    PythonBigDL
  168. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Definition Classes
    PythonBigDL
  169. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Definition Classes
    PythonBigDL
  170. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Definition Classes
    PythonBigDL
  171. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Definition Classes
    PythonBigDL
  172. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Definition Classes
    PythonBigDL
  173. def createNegative(inplace: Boolean): Negative[T]

    Definition Classes
    PythonBigDL
  174. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

    Definition Classes
    PythonBigDL
  175. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Definition Classes
    PythonBigDL
  176. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Definition Classes
    PythonBigDL
  177. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

    Definition Classes
    PythonBigDL
  178. def createOnes(): Ones.type

    Definition Classes
    PythonBigDL
  179. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

    Definition Classes
    PythonBigDL
  180. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Definition Classes
    PythonBigDL
  181. def createPack(dimension: Int): Pack[T]

    Definition Classes
    PythonBigDL
  182. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Definition Classes
    PythonBigDL
  183. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Definition Classes
    PythonBigDL
  184. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Definition Classes
    PythonBigDL
  185. def createParallelTable(): ParallelTable[T]

    Definition Classes
    PythonBigDL
  186. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Definition Classes
    PythonBigDL
  187. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

    Definition Classes
    PythonBigDL
  188. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Definition Classes
    PythonBigDL
  189. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Definition Classes
    PythonBigDL
  190. def createPoissonCriterion: PoissonCriterion[T]

    Definition Classes
    PythonBigDL
  191. def createPoly(power: Double, maxIteration: Int): Poly

    Definition Classes
    PythonBigDL
  192. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

    Definition Classes
    PythonBigDL
  193. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

    Definition Classes
    PythonBigDL
  194. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

    Definition Classes
    PythonBigDL
  195. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Definition Classes
    PythonBigDL
  196. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Definition Classes
    PythonBigDL
  197. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

    Definition Classes
    PythonBigDL
  198. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Definition Classes
    PythonBigDL
  199. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Definition Classes
    PythonBigDL
  200. def createRandomSampler(): FeatureTransformer

    Definition Classes
    PythonBigDL
  201. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Definition Classes
    PythonBigDL
  202. def createRandomUniform(): InitializationMethod

    Definition Classes
    PythonBigDL
  203. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Definition Classes
    PythonBigDL
  204. def createReLU(ip: Boolean = false): ReLU[T]

    Definition Classes
    PythonBigDL
  205. def createReLU6(inplace: Boolean = false): ReLU6[T]

    Definition Classes
    PythonBigDL
  206. def createRecurrent(): Recurrent[T]

    Definition Classes
    PythonBigDL
  207. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Definition Classes
    PythonBigDL
  208. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Definition Classes
    PythonBigDL
  209. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Definition Classes
    PythonBigDL
  210. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

    Definition Classes
    PythonBigDL
  211. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

    Definition Classes
    PythonBigDL
  212. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Definition Classes
    PythonBigDL
  213. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Definition Classes
    PythonBigDL
  214. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

    Definition Classes
    PythonBigDL
  215. def createRoiNormalize(): RoiNormalize

    Definition Classes
    PythonBigDL
  216. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Definition Classes
    PythonBigDL
  217. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Definition Classes
    PythonBigDL
  218. def createRoiResize(normalized: Boolean): RoiResize

    Definition Classes
    PythonBigDL
  219. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Definition Classes
    PythonBigDL
  220. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

    Definition Classes
    PythonBigDL
  221. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Definition Classes
    PythonBigDL
  222. def createScale(size: List[Int]): Scale[T]

    Definition Classes
    PythonBigDL
  223. def createSelect(dimension: Int, index: Int): Select[T]

    Definition Classes
    PythonBigDL
  224. def createSelectTable(dimension: Int): SelectTable[T]

    Definition Classes
    PythonBigDL
  225. def createSequential(): Container[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  226. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

    Definition Classes
    PythonBigDL
  227. def createSeveralIteration(interval: Int): Trigger

    Definition Classes
    PythonBigDL
  228. def createSigmoid(): Sigmoid[T]

    Definition Classes
    PythonBigDL
  229. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Definition Classes
    PythonBigDL
  230. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Definition Classes
    PythonBigDL
  231. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Definition Classes
    PythonBigDL
  232. def createSoftMax(): SoftMax[T]

    Definition Classes
    PythonBigDL
  233. def createSoftMin(): SoftMin[T]

    Definition Classes
    PythonBigDL
  234. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

    Definition Classes
    PythonBigDL
  235. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Definition Classes
    PythonBigDL
  236. def createSoftSign(): SoftSign[T]

    Definition Classes
    PythonBigDL
  237. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Definition Classes
    PythonBigDL
  238. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Definition Classes
    PythonBigDL
  239. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Definition Classes
    PythonBigDL
  240. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Definition Classes
    PythonBigDL
  241. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

    Definition Classes
    PythonBigDL
  242. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Definition Classes
    PythonBigDL
  243. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Definition Classes
    PythonBigDL
  244. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Definition Classes
    PythonBigDL
  245. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

    Definition Classes
    PythonBigDL
  246. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Definition Classes
    PythonBigDL
  247. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Definition Classes
    PythonBigDL
  248. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

    Definition Classes
    PythonBigDL
  249. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

    Definition Classes
    PythonBigDL
  250. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

    Definition Classes
    PythonBigDL
  251. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Definition Classes
    PythonBigDL
  252. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Definition Classes
    PythonBigDL
  253. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

    Definition Classes
    PythonBigDL
  254. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Definition Classes
    PythonBigDL
  255. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Definition Classes
    PythonBigDL
  256. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Definition Classes
    PythonBigDL
  257. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Definition Classes
    PythonBigDL
  258. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Definition Classes
    PythonBigDL
  259. def createSqrt(): Sqrt[T]

    Definition Classes
    PythonBigDL
  260. def createSquare(): Square[T]

    Definition Classes
    PythonBigDL
  261. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Definition Classes
    PythonBigDL
  262. def createStep(stepSize: Int, gamma: Double): Step

    Definition Classes
    PythonBigDL
  263. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

    Definition Classes
    PythonBigDL
  264. def createTanh(): Tanh[T]

    Definition Classes
    PythonBigDL
  265. def createTanhShrink(): TanhShrink[T]

    Definition Classes
    PythonBigDL
  266. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Definition Classes
    PythonBigDL
  267. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Definition Classes
    PythonBigDL
  268. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Definition Classes
    PythonBigDL
  269. def createTile(dim: Int, copies: Int): Tile[T]

    Definition Classes
    PythonBigDL
  270. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Definition Classes
    PythonBigDL
  271. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

    Definition Classes
    PythonBigDL
  272. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

    Definition Classes
    PythonBigDL
  273. def createTop1Accuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  274. def createTop5Accuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  275. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Definition Classes
    PythonBigDL
  276. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

    Definition Classes
    PythonBigDL
  277. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Definition Classes
    PythonBigDL
  278. def createTreeNNAccuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  279. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Definition Classes
    PythonBigDL
  280. def createUpSampling1D(length: Int): UpSampling1D[T]

    Definition Classes
    PythonBigDL
  281. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Definition Classes
    PythonBigDL
  282. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Definition Classes
    PythonBigDL
  283. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Definition Classes
    PythonBigDL
  284. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Definition Classes
    PythonBigDL
  285. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

    Definition Classes
    PythonBigDL
  286. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Definition Classes
    PythonBigDL
  287. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Definition Classes
    PythonBigDL
  288. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Definition Classes
    PythonBigDL
  289. def createWarmup(delta: Double): Warmup

    Definition Classes
    PythonBigDL
  290. def createXavier(): Xavier.type

    Definition Classes
    PythonBigDL
  291. def createZeros(): Zeros.type

    Definition Classes
    PythonBigDL
  292. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  293. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

    Definition Classes
    PythonBigDL
  294. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Definition Classes
    PythonBigDL
  295. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

    Definition Classes
    PythonBigDL
  296. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  297. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  298. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Definition Classes
    PythonBigDL
  299. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

    Definition Classes
    PythonBigDL
  300. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

    Definition Classes
    PythonBigDL
  301. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  302. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  303. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  304. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

    Definition Classes
    PythonBigDL
  305. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  306. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  307. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  308. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

    Definition Classes
    PythonBigDL
  309. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  310. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Definition Classes
    PythonBigDL
  311. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Definition Classes
    PythonBigDL
  312. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Definition Classes
    PythonBigDL
  313. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  314. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  315. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Definition Classes
    PythonBigDL
  316. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Definition Classes
    PythonBigDL
  317. def getHiddenState(rec: Recurrent[T]): JActivity

    Definition Classes
    PythonBigDL
  318. def getNodeAndCoreNumber(): Array[Int]

    Definition Classes
    PythonBigDL
  319. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

    Definition Classes
    PythonBigDL
  320. def getRunningMean(module: BatchNormalization[T]): JTensor

    Definition Classes
    PythonBigDL
  321. def getRunningStd(module: BatchNormalization[T]): JTensor

    Definition Classes
    PythonBigDL
  322. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Definition Classes
    PythonBigDL
  323. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  324. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Definition Classes
    PythonBigDL
  325. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

    Definition Classes
    PythonBigDL
  326. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Definition Classes
    PythonBigDL
  327. def initEngine(): Unit

    Definition Classes
    PythonBigDL
  328. def isDistributed(imageFrame: ImageFrame): Boolean

    Definition Classes
    PythonBigDL
  329. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  330. def isLocal(imageFrame: ImageFrame): Boolean

    Definition Classes
    PythonBigDL
  331. def isWithWeights(module: Module[T]): Boolean

    Definition Classes
    PythonBigDL
  332. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

    Definition Classes
    PythonBigDL
  333. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  334. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  335. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  336. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  337. def loadOptimMethod(path: String): OptimMethod[T]

    Definition Classes
    PythonBigDL
  338. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  339. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  340. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

    Definition Classes
    PythonBigDL
  341. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Definition Classes
    PythonBigDL
  342. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Definition Classes
    PythonBigDL
  343. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

    Definition Classes
    PythonBigDL
  344. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

    Definition Classes
    PythonBigDL
  345. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  346. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Definition Classes
    PythonBigDL
  347. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Definition Classes
    PythonBigDL
  348. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  349. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Definition Classes
    PythonBigDL
  350. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Definition Classes
    PythonBigDL
  351. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Definition Classes
    PythonBigDL
  352. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  353. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  354. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  355. final def notify(): Unit

    Definition Classes
    AnyRef
  356. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  357. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

    Definition Classes
    PythonBigDL
  358. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Definition Classes
    PythonBigDL
  359. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Definition Classes
    PythonBigDL
  360. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Definition Classes
    PythonBigDL
  361. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

    Definition Classes
    PythonBigDL
  362. def redirectSparkLogs(logPath: String): Unit

    Definition Classes
    PythonBigDL
  363. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  364. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Definition Classes
    PythonBigDL
  365. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Definition Classes
    PythonBigDL
  366. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Definition Classes
    PythonBigDL
  367. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Definition Classes
    PythonBigDL
  368. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

    Save tensor dictionary to a Java hashmap object file

    Definition Classes
    PythonBigDL
  369. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

    Definition Classes
    PythonBigDL
  370. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Definition Classes
    PythonBigDL
  371. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  372. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Definition Classes
    PythonBigDL
  373. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Definition Classes
    PythonBigDL
  374. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  375. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Definition Classes
    PythonBigDL
  376. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Definition Classes
    PythonBigDL
  377. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  378. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Definition Classes
    PythonBigDL
  379. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

    Definition Classes
    PythonBigDL
  380. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Definition Classes
    PythonBigDL
  381. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Definition Classes
    PythonBigDL
  382. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

    Definition Classes
    PythonBigDL
  383. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Definition Classes
    PythonBigDL
  384. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Definition Classes
    PythonBigDL
  385. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Definition Classes
    PythonBigDL
  386. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Definition Classes
    PythonBigDL
  387. def setModelSeed(seed: Long): Unit

    Definition Classes
    PythonBigDL
  388. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Definition Classes
    PythonBigDL
  389. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Definition Classes
    PythonBigDL
  390. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Definition Classes
    PythonBigDL
  391. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Definition Classes
    PythonBigDL
  392. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Definition Classes
    PythonBigDL
  393. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Definition Classes
    PythonBigDL
  394. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  395. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  396. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  397. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Definition Classes
    PythonBigDL
  398. def showBigDlInfoLogs(): Unit

    Definition Classes
    PythonBigDL
  399. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Definition Classes
    PythonBigDL
  400. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Definition Classes
    PythonBigDL
  401. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  402. def testActivityWithTableOfTable(): JActivity

  403. def testActivityWithTableOfTensor(): JActivity

  404. def testActivityWithTensor(): JActivity

  405. def testDict(): Map[String, String]

  406. def testDictJMapJTensor(): Map[String, Map[String, JTensor]]

  407. def testDictJTensor(): Map[String, JTensor]

  408. def testSample(sample: Sample): Sample

    Definition Classes
    PythonBigDL
  409. def testTensor(jTensor: JTensor): JTensor

    Definition Classes
    PythonBigDL
  410. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

    Definition Classes
    PythonBigDL
  411. def toJSample(record: Sample): dataset.Sample[T]

    Definition Classes
    PythonBigDL
  412. def toJTensor(tensor: Tensor[T]): JTensor

    Definition Classes
    PythonBigDL
  413. def toPySample(sample: dataset.Sample[T]): Sample

    Definition Classes
    PythonBigDL
  414. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

    Definition Classes
    PythonBigDL
  415. def toString(): String

    Definition Classes
    AnyRef → Any
  416. def toTensor(jTensor: JTensor): Tensor[T]

    Definition Classes
    PythonBigDL
  417. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  418. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Definition Classes
    PythonBigDL
  419. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Definition Classes
    PythonBigDL
  420. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  421. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Definition Classes
    PythonBigDL
  422. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Definition Classes
    PythonBigDL
  423. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  424. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  425. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  426. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

    Definition Classes
    PythonBigDL

Inherited from PythonBigDL[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped