com.intel.analytics.bigdl.python.api

PythonBigDL

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def createAbs(): Abs[T]

  10. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

  11. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

  12. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

  13. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

  14. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

  15. def createAdd(inputSize: Int): Add[T]

  16. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

  17. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

  18. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

  19. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

  20. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

  21. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

  22. def createBilinearFiller(): BilinearFiller.type

  23. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

  24. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

  25. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

  26. def createCAddTable(inplace: Boolean = false): CAddTable[T]

  27. def createCDivTable(): CDivTable[T]

  28. def createCMaxTable(): CMaxTable[T]

  29. def createCMinTable(): CMinTable[T]

  30. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

  31. def createCMulTable(): CMulTable[T]

  32. def createCSubTable(): CSubTable[T]

  33. def createClamp(min: Int, max: Int): Clamp[T]

  34. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true): ClassNLLCriterion[T]

  35. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

  36. def createConcat(dimension: Int): Concat[T]

  37. def createConcatTable(): ConcatTable[T]

  38. def createConstInitMethod(value: Double): ConstInitMethod

  39. def createContiguous(): Contiguous[T]

  40. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

  41. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

  42. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

  43. def createCosineDistance(): CosineDistance[T]

  44. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

  45. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

  46. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

  47. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

  48. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  49. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

  50. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

  51. def createDefault(): Default

  52. def createDenseToSparse(): DenseToSparse[T]

  53. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

  54. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

  55. def createDotProduct(): DotProduct[T]

  56. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

  57. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

  58. def createEcho(): Echo[T]

  59. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

  60. def createEveryEpoch(): Trigger

  61. def createExp(): Exp[T]

  62. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

  63. def createFlattenTable(): FlattenTable[T]

  64. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

  65. def createGaussianCriterion(): GaussianCriterion[T]

  66. def createGaussianSampler(): GaussianSampler[T]

  67. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

  68. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

  69. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

  70. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

  71. def createIdentity(): Identity[T]

  72. def createIndex(dimension: Int): Index[T]

  73. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

  74. def createInput(): ModuleNode[T]

  75. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

  76. def createKLDCriterion(): KLDCriterion[T]

  77. def createL1Cost(): L1Cost[T]

  78. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

  79. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

  80. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

  81. def createL1Regularizer(l1: Double): L1Regularizer[T]

  82. def createL2Regularizer(l2: Double): L2Regularizer[T]

  83. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

  84. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

  85. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

  86. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

  87. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

  88. def createLog(): Log[T]

  89. def createLogSigmoid(): LogSigmoid[T]

  90. def createLogSoftMax(): LogSoftMax[T]

  91. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

  92. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

  93. def createMAE(): ValidationMethod[T]

  94. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

  95. def createMSECriterion: MSECriterion[T]

  96. def createMV(trans: Boolean = false): MV[T]

  97. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

  98. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginCriterion[T]

  99. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

  100. def createMaskedSelect(): MaskedSelect[T]

  101. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

  102. def createMaxEpoch(max: Int): Trigger

  103. def createMaxIteration(max: Int): Trigger

  104. def createMaxScore(max: Float): Trigger

  105. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T, T]

  106. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

  107. def createMinLoss(min: Float): Trigger

  108. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

  109. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

  110. def createMul(): Mul[T]

  111. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

  112. def createMultiCriterion(): MultiCriterion[T]

  113. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

  114. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

  115. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

  116. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

  117. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

  118. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

  119. def createNegative(inplace: Boolean): Negative[T]

  120. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

  121. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

  122. def createOnes(): Ones.type

  123. def createOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  124. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

  125. def createPack(dimension: Int): Pack[T]

  126. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

  127. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

  128. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

  129. def createParallelTable(): ParallelTable[T]

  130. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

  131. def createPoly(power: Double, maxIteration: Int): Poly

  132. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

  133. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

  134. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

  135. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

  136. def createRandomUniform(): InitializationMethod

  137. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

  138. def createReLU(ip: Boolean = false): ReLU[T]

  139. def createReLU6(inplace: Boolean = false): ReLU6[T]

  140. def createRecurrent(): Recurrent[T]

  141. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

  142. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

  143. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

  144. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean): ResizeBilinear[T]

  145. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

  146. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

  147. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

  148. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

  149. def createScale(size: List[Int]): Scale[T]

  150. def createSelect(dimension: Int, index: Int): Select[T]

  151. def createSelectTable(dimension: Int): SelectTable[T]

  152. def createSequential(): Sequential[T]

  153. def createSeveralIteration(interval: Int): Trigger

  154. def createSigmoid(): Sigmoid[T]

  155. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

  156. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

  157. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

  158. def createSoftMax(): SoftMax[T]

  159. def createSoftMin(): SoftMin[T]

  160. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

  161. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

  162. def createSoftSign(): SoftSign[T]

  163. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

  164. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

  165. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

  166. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

  167. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SpatialBatchNormalization[T]

  168. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

  169. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

  170. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

  171. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0): SpatialCrossMapLRN[T]

  172. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

  173. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

  174. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

  175. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

  176. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

  177. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

  178. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

  179. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

  180. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

  181. def createSqrt(): Sqrt[T]

  182. def createSquare(): Square[T]

  183. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

  184. def createStep(stepSize: Int, gamma: Double): Step

  185. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T, T]

  186. def createTanh(): Tanh[T]

  187. def createTanhShrink(): TanhShrink[T]

  188. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

  189. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

  190. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

  191. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

  192. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

  193. def createTop1Accuracy(): ValidationMethod[T]

  194. def createTop5Accuracy(): ValidationMethod[T]

  195. def createTrainSummary(logDir: String, appName: String): TrainSummary

  196. def createTranspose(permutations: List[List[Int]]): Transpose[T]

  197. def createTreeNNAccuracy(): ValidationMethod[T]

  198. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

  199. def createValidationSummary(logDir: String, appName: String): ValidationSummary

  200. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

  201. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

  202. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

  203. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

  204. def createXavier(): Xavier.type

  205. def createZeros(): Zeros.type

  206. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

  207. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

  208. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

  209. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

  210. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  211. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  212. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

  213. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  214. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

  215. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

  216. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

  217. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  218. def getHiddenStates(rec: Recurrent[T]): List[JTensor]

  219. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

  220. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  221. def initEngine(): Unit

  222. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  223. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

  224. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

  225. def loadBigDLModule(path: String): AbstractModule[Activity, Activity, T]

  226. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

  227. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

  228. def loadOptimMethod(path: String): OptimMethod[T]

  229. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String): AbstractModule[Activity, Activity, T]

  230. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

  231. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

  232. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

  233. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

  234. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

  235. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

  236. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[JTensor]

  237. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

  238. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  239. final def notify(): Unit

    Definition Classes
    AnyRef
  240. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  241. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

  242. def redirectSparkLogs(logPath: String): Unit

  243. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

  244. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

  245. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

  246. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

  247. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

  248. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

  249. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

  250. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

  251. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

  252. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

  253. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

  254. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  255. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

  256. def setHiddenStates(rec: Recurrent[T], hiddenStates: List[JTensor], isTable: Boolean): Unit

  257. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

  258. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

  259. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

  260. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

  261. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

  262. def setModelSeed(seed: Long): Unit

  263. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

  264. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

  265. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

  266. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

  267. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

  268. def showBigDlInfoLogs(): Unit

  269. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

  270. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

  271. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  272. def testSample(sample: Sample): Sample

  273. def testTensor(jTensor: JTensor): JTensor

  274. def toJTensor(tensor: Tensor[T]): JTensor

  275. def toPySample(sample: dataset.Sample[T]): Sample

  276. def toSample(record: Sample): dataset.Sample[T]

  277. def toString(): String

    Definition Classes
    AnyRef → Any
  278. def toTensor(jTensor: JTensor): Tensor[T]

  279. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

  280. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

  281. def uniform(a: Double, b: Double, size: List[Int]): JTensor

  282. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

  283. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  284. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  285. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped