com
.
intel
.
analytics
.
bigdl
.
python
.
api
PythonBigDL
class
PythonBigDL
[
T
]
extends
Serializable
Implementation of Python API for BigDL
Linear Supertypes
Serializable
,
Serializable
,
AnyRef
,
Any
Ordering
Alphabetic
By inheritance
Inherited
PythonBigDL
Serializable
Serializable
AnyRef
Any
Hide All
Show all
Learn more about member selection
Visibility
Public
All
Instance Constructors
new
PythonBigDL
()
(
implicit
arg0:
ClassTag
[
T
]
,
ev:
TensorNumeric
[
T
]
)
Value Members
final
def
!=
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
!=
(
arg0:
Any
)
:
Boolean
Definition Classes
Any
final
def
##
()
:
Int
Definition Classes
AnyRef → Any
final
def
==
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
==
(
arg0:
Any
)
:
Boolean
Definition Classes
Any
def
activityToJTensors
(
outputActivity:
Activity
)
:
List
[
JTensor
]
final
def
asInstanceOf
[
T0
]
:
T0
Definition Classes
Any
def
clone
()
:
AnyRef
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
...
)
def
createAbs
()
:
Abs
[
T
]
def
createAbsCriterion
(
sizeAverage:
Boolean
=
true
)
:
AbsCriterion
[
T
]
def
createAdadelta
(
decayRate:
Double
=
0.9
,
Epsilon:
Double
=
1e-10
)
:
Adadelta
[
T
]
def
createAdagrad
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
weightDecay:
Double
=
0.0
)
:
Adagrad
[
T
]
def
createAdam
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
beta1:
Double
=
0.9
,
beta2:
Double
=
0.999
,
Epsilon:
Double
=
1e-8
)
:
Adam
[
T
]
def
createAdamax
(
learningRate:
Double
=
0.002
,
beta1:
Double
=
0.9
,
beta2:
Double
=
0.999
,
Epsilon:
Double
=
1e-38
)
:
Adamax
[
T
]
def
createAdd
(
inputSize:
Int
)
:
Add
[
T
]
def
createAddConstant
(
constant_scalar:
Double
,
inplace:
Boolean
=
false
)
:
AddConstant
[
T
]
def
createBCECriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
BCECriterion
[
T
]
def
createBatchNormalization
(
nOutput:
Int
,
eps:
Double
=
1e-5
,
momentum:
Double
=
0.1
,
affine:
Boolean
=
true
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
BatchNormalization
[
T
]
def
createBiRecurrent
(
merge:
AbstractModule
[
Table
,
Tensor
[
T
],
T
] =
null
)
:
BiRecurrent
[
T
]
def
createBilinear
(
inputSize1:
Int
,
inputSize2:
Int
,
outputSize:
Int
,
biasRes:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
Bilinear
[
T
]
def
createBilinearFiller
()
:
BilinearFiller
.type
def
createBinaryTreeLSTM
(
inputSize:
Int
,
hiddenSize:
Int
,
gateOutput:
Boolean
=
true
,
withGraph:
Boolean
=
true
)
:
BinaryTreeLSTM
[
T
]
def
createBottle
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
nInputDim:
Int
=
2
,
nOutputDim1:
Int
=
Int.MaxValue
)
:
Bottle
[
T
]
def
createCAdd
(
size:
List
[
Int
]
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
CAdd
[
T
]
def
createCAddTable
(
inplace:
Boolean
=
false
)
:
CAddTable
[
T
]
def
createCDivTable
()
:
CDivTable
[
T
]
def
createCMaxTable
()
:
CMaxTable
[
T
]
def
createCMinTable
()
:
CMinTable
[
T
]
def
createCMul
(
size:
List
[
Int
]
,
wRegularizer:
Regularizer
[
T
] =
null
)
:
CMul
[
T
]
def
createCMulTable
()
:
CMulTable
[
T
]
def
createCSubTable
()
:
CSubTable
[
T
]
def
createClamp
(
min:
Int
,
max:
Int
)
:
Clamp
[
T
]
def
createClassNLLCriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
ClassNLLCriterion
[
T
]
def
createClassSimplexCriterion
(
nClasses:
Int
)
:
ClassSimplexCriterion
[
T
]
def
createConcat
(
dimension:
Int
)
:
Concat
[
T
]
def
createConcatTable
()
:
ConcatTable
[
T
]
def
createConstInitMethod
(
value:
Double
)
:
ConstInitMethod
def
createContiguous
()
:
Contiguous
[
T
]
def
createConvLSTMPeephole
(
inputSize:
Int
,
outputSize:
Int
,
kernelI:
Int
,
kernelC:
Int
,
stride:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
withPeephole:
Boolean
=
true
)
:
ConvLSTMPeephole
[
T
]
def
createCosine
(
inputSize:
Int
,
outputSize:
Int
)
:
Cosine
[
T
]
def
createCosineDistance
()
:
CosineDistance
[
T
]
def
createCosineDistanceCriterion
(
sizeAverage:
Boolean
=
true
)
:
CosineDistanceCriterion
[
T
]
def
createCosineEmbeddingCriterion
(
margin:
Double
=
0.0
,
sizeAverage:
Boolean
=
true
)
:
CosineEmbeddingCriterion
[
T
]
def
createCrossEntropyCriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
CrossEntropyCriterion
[
T
]
def
createDefault
()
:
Default
def
createDiceCoefficientCriterion
(
sizeAverage:
Boolean
=
true
,
epsilon:
Float
=
1.0f
)
:
DiceCoefficientCriterion
[
T
]
def
createDistKLDivCriterion
(
sizeAverage:
Boolean
=
true
)
:
DistKLDivCriterion
[
T
]
def
createDotProduct
()
:
DotProduct
[
T
]
def
createDropout
(
initP:
Double
=
0.5
,
inplace:
Boolean
=
false
,
scale:
Boolean
=
true
)
:
Dropout
[
T
]
def
createELU
(
alpha:
Double
=
1.0
,
inplace:
Boolean
=
false
)
:
ELU
[
T
]
def
createEcho
()
:
Echo
[
T
]
def
createEuclidean
(
inputSize:
Int
,
outputSize:
Int
,
fastBackward:
Boolean
=
true
)
:
Euclidean
[
T
]
def
createEveryEpoch
()
:
Trigger
def
createExp
()
:
Exp
[
T
]
def
createExponential
(
decayStep:
Int
,
decayRate:
Double
,
stairCase:
Boolean
=
false
)
:
Exponential
def
createFlattenTable
()
:
FlattenTable
[
T
]
def
createGRU
(
inputSize:
Int
,
outputSize:
Int
,
p:
Double
=
0
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
GRU
[
T
]
def
createGradientReversal
(
lambda:
Double
=
1
)
:
GradientReversal
[
T
]
def
createHardShrink
(
lambda:
Double
=
0.5
)
:
HardShrink
[
T
]
def
createHardTanh
(
minValue:
Double
=
1
,
maxValue:
Double
=
1
,
inplace:
Boolean
=
false
)
:
HardTanh
[
T
]
def
createHingeEmbeddingCriterion
(
margin:
Double
=
1
,
sizeAverage:
Boolean
=
true
)
:
HingeEmbeddingCriterion
[
T
]
def
createIdentity
()
:
Identity
[
T
]
def
createIndex
(
dimension:
Int
)
:
Index
[
T
]
def
createInferReshape
(
size:
List
[
Int
]
,
batchMode:
Boolean
=
false
)
:
InferReshape
[
T
]
def
createInput
()
:
ModuleNode
[
T
]
def
createJoinTable
(
dimension:
Int
,
nInputDims:
Int
)
:
JoinTable
[
T
]
def
createL1Cost
()
:
L1Cost
[
T
]
def
createL1HingeEmbeddingCriterion
(
margin:
Double
=
1
)
:
L1HingeEmbeddingCriterion
[
T
]
def
createL1L2Regularizer
(
l1:
Double
,
l2:
Double
)
:
L1L2Regularizer
[
T
]
def
createL1Penalty
(
l1weight:
Int
,
sizeAverage:
Boolean
=
false
,
provideOutput:
Boolean
=
true
)
:
L1Penalty
[
T
]
def
createL1Regularizer
(
l1:
Double
)
:
L1Regularizer
[
T
]
def
createL2Regularizer
(
l2:
Double
)
:
L2Regularizer
[
T
]
def
createLBFGS
(
maxIter:
Int
=
20
,
maxEval:
Double
=
Double.MaxValue
,
tolFun:
Double
=
1e-5
,
tolX:
Double
=
1e-9
,
nCorrection:
Int
=
100
,
learningRate:
Double
=
1.0
,
verbose:
Boolean
=
false
,
lineSearch:
LineSearch
[
T
] =
null
,
lineSearchOptions:
Map
[
Any
,
Any
] =
null
)
:
LBFGS
[
T
]
def
createLSTM
(
inputSize:
Int
,
hiddenSize:
Int
,
p:
Double
=
0
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
LSTM
[
T
]
def
createLSTMPeephole
(
inputSize:
Int
,
hiddenSize:
Int
,
p:
Double
=
0
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
LSTMPeephole
[
T
]
def
createLeakyReLU
(
negval:
Double
=
0.01
,
inplace:
Boolean
=
false
)
:
LeakyReLU
[
T
]
def
createLinear
(
inputSize:
Int
,
outputSize:
Int
,
withBias:
Boolean
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
Linear
[
T
]
def
createLog
()
:
Log
[
T
]
def
createLogSigmoid
()
:
LogSigmoid
[
T
]
def
createLogSoftMax
()
:
LogSoftMax
[
T
]
def
createLookupTable
(
nIndex:
Int
,
nOutput:
Int
,
paddingValue:
Double
=
0
,
maxNorm:
Double
=
Double.MaxValue
,
normType:
Double
=
2.0
,
shouldScaleGradByFreq:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
)
:
LookupTable
[
T
]
def
createLoss
(
criterion:
Criterion
[
T
]
)
:
ValidationMethod
[
T
]
def
createMAE
()
:
ValidationMethod
[
T
]
def
createMM
(
transA:
Boolean
=
false
,
transB:
Boolean
=
false
)
:
MM
[
T
]
def
createMSECriterion
:
MSECriterion
[
T
]
def
createMV
(
trans:
Boolean
=
false
)
:
MV
[
T
]
def
createMapTable
(
module:
AbstractModule
[
Activity
,
Activity
,
T
] =
null
)
:
MapTable
[
T
]
def
createMarginCriterion
(
margin:
Double
=
1.0
,
sizeAverage:
Boolean
=
true
)
:
MarginCriterion
[
T
]
def
createMarginRankingCriterion
(
margin:
Double
=
1.0
,
sizeAverage:
Boolean
=
true
)
:
MarginRankingCriterion
[
T
]
def
createMaskedSelect
()
:
MaskedSelect
[
T
]
def
createMax
(
dim:
Int
=
1
,
numInputDims:
Int
=
Int.MinValue
)
:
Max
[
T
]
def
createMaxEpoch
(
max:
Int
)
:
Trigger
def
createMaxIteration
(
max:
Int
)
:
Trigger
def
createMaxScore
(
max:
Float
)
:
Trigger
def
createMean
(
dimension:
Int
=
1
,
nInputDims:
Int
=
1
,
squeeze:
Boolean
=
true
)
:
Mean
[
T
]
def
createMin
(
dim:
Int
=
1
,
numInputDims:
Int
=
Int.MinValue
)
:
Min
[
T
]
def
createMinLoss
(
min:
Float
)
:
Trigger
def
createMixtureTable
(
dim:
Int
=
Int.MaxValue
)
:
MixtureTable
[
T
]
def
createModel
(
input:
List
[
ModuleNode
[
T
]]
,
output:
List
[
ModuleNode
[
T
]]
)
:
Graph
[
T
]
def
createMul
()
:
Mul
[
T
]
def
createMulConstant
(
scalar:
Double
,
inplace:
Boolean
=
false
)
:
MulConstant
[
T
]
def
createMultiCriterion
()
:
MultiCriterion
[
T
]
def
createMultiLabelMarginCriterion
(
sizeAverage:
Boolean
=
true
)
:
MultiLabelMarginCriterion
[
T
]
def
createMultiLabelSoftMarginCriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
MultiLabelSoftMarginCriterion
[
T
]
def
createMultiMarginCriterion
(
p:
Int
=
1
,
weights:
JTensor
=
null
,
margin:
Double
=
1.0
,
sizeAverage:
Boolean
=
true
)
:
MultiMarginCriterion
[
T
]
def
createMultiStep
(
stepSizes:
List
[
Int
]
,
gamma:
Double
)
:
MultiStep
def
createNarrow
(
dimension:
Int
,
offset:
Int
,
length:
Int
=
1
)
:
Narrow
[
T
]
def
createNarrowTable
(
offset:
Int
,
length:
Int
=
1
)
:
NarrowTable
[
T
]
def
createNode
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
x:
List
[
ModuleNode
[
T
]]
)
:
ModuleNode
[
T
]
def
createNormalize
(
p:
Double
,
eps:
Double
=
1e-10
)
:
Normalize
[
T
]
def
createOnes
()
:
Ones
.type
def
createOptimizer
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
trainingRdd:
JavaRDD
[
Sample
]
,
criterion:
Criterion
[
T
]
,
optimMethod:
OptimMethod
[
T
]
,
endTrigger:
Trigger
,
batchSize:
Int
)
:
Optimizer
[
T
,
MiniBatch
[
T
]]
def
createPReLU
(
nOutputPlane:
Int
=
0
)
:
PReLU
[
T
]
def
createPack
(
dimension:
Int
)
:
Pack
[
T
]
def
createPadding
(
dim:
Int
,
pad:
Int
,
nInputDim:
Int
,
value:
Double
=
0.0
,
nIndex:
Int
=
1
)
:
Padding
[
T
]
def
createPairwiseDistance
(
norm:
Int
=
2
)
:
PairwiseDistance
[
T
]
def
createParallelCriterion
(
repeatTarget:
Boolean
=
false
)
:
ParallelCriterion
[
T
]
def
createParallelTable
()
:
ParallelTable
[
T
]
def
createPlateau
(
monitor:
String
,
factor:
Float
=
0.1f
,
patience:
Int
=
10
,
mode:
String
=
"min"
,
epsilon:
Float
=
1e-4f
,
cooldown:
Int
=
0
,
minLr:
Float
=
0
)
:
Plateau
def
createPoly
(
power:
Double
,
maxIteration:
Int
)
:
Poly
def
createPower
(
power:
Double
,
scale:
Double
=
1
,
shift:
Double
=
0
)
:
Power
[
T
]
def
createRMSprop
(
learningRate:
Double
=
1e-2
,
learningRateDecay:
Double
=
0.0
,
decayRate:
Double
=
0.99
,
Epsilon:
Double
=
1e-8
)
:
RMSprop
[
T
]
def
createRReLU
(
lower:
Double
=
1.0 / 8
,
upper:
Double
=
1.0 / 3
,
inplace:
Boolean
=
false
)
:
RReLU
[
T
]
def
createRandomNormal
(
mean:
Double
,
stdv:
Double
)
:
RandomNormal
def
createRandomUniform
()
:
InitializationMethod
def
createRandomUniform
(
lower:
Double
,
upper:
Double
)
:
InitializationMethod
def
createReLU
(
ip:
Boolean
=
false
)
:
ReLU
[
T
]
def
createReLU6
(
inplace:
Boolean
=
false
)
:
ReLU6
[
T
]
def
createRecurrent
()
:
Recurrent
[
T
]
def
createReplicate
(
nFeatures:
Int
,
dim:
Int
=
1
,
nDim:
Int
=
Int.MaxValue
)
:
Replicate
[
T
]
def
createReshape
(
size:
List
[
Int
]
,
batchMode:
Boolean
=
null
)
:
Reshape
[
T
]
def
createReverse
(
dimension:
Int
=
1
,
isInplace:
Boolean
=
false
)
:
Reverse
[
T
]
def
createRnnCell
(
inputSize:
Int
,
hiddenSize:
Int
,
activation:
TensorModule
[
T
]
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
RnnCell
[
T
]
def
createRoiPooling
(
pooled_w:
Int
,
pooled_h:
Int
,
spatial_scale:
Double
)
:
RoiPooling
[
T
]
def
createSGD
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
weightDecay:
Double
=
0.0
,
momentum:
Double
=
0.0
,
dampening:
Double
=
Double.MaxValue
,
nesterov:
Boolean
=
false
,
leaningRateSchedule:
LearningRateSchedule
=
SGD.Default()
,
learningRates:
JTensor
=
null
,
weightDecays:
JTensor
=
null
)
:
SGD
[
T
]
def
createScale
(
size:
List
[
Int
]
)
:
Scale
[
T
]
def
createSelect
(
dimension:
Int
,
index:
Int
)
:
Select
[
T
]
def
createSelectTable
(
dimension:
Int
)
:
SelectTable
[
T
]
def
createSequential
()
:
Sequential
[
T
]
def
createSeveralIteration
(
interval:
Int
)
:
Trigger
def
createSigmoid
()
:
Sigmoid
[
T
]
def
createSmoothL1Criterion
(
sizeAverage:
Boolean
=
true
)
:
SmoothL1Criterion
[
T
]
def
createSmoothL1CriterionWithWeights
(
sigma:
Double
,
num:
Int
=
0
)
:
SmoothL1CriterionWithWeights
[
T
]
def
createSoftMarginCriterion
(
sizeAverage:
Boolean
=
true
)
:
SoftMarginCriterion
[
T
]
def
createSoftMax
()
:
SoftMax
[
T
]
def
createSoftMin
()
:
SoftMin
[
T
]
def
createSoftPlus
(
beta:
Double
=
1.0
)
:
SoftPlus
[
T
]
def
createSoftShrink
(
lambda:
Double
=
0.5
)
:
SoftShrink
[
T
]
def
createSoftSign
()
:
SoftSign
[
T
]
def
createSoftmaxWithCriterion
(
ignoreLabel:
Integer
=
null
,
normalizeMode:
String
=
"VALID"
)
:
SoftmaxWithCriterion
[
T
]
def
createSpatialAveragePooling
(
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
ceilMode:
Boolean
=
false
,
countIncludePad:
Boolean
=
true
,
divide:
Boolean
=
true
)
:
SpatialAveragePooling
[
T
]
def
createSpatialBatchNormalization
(
nOutput:
Int
,
eps:
Double
=
1e-5
,
momentum:
Double
=
0.1
,
affine:
Boolean
=
true
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
SpatialBatchNormalization
[
T
]
def
createSpatialContrastiveNormalization
(
nInputPlane:
Int
=
1
,
kernel:
JTensor
=
null
,
threshold:
Double
=
1e-4
,
thresval:
Double
=
1e-4
)
:
SpatialContrastiveNormalization
[
T
]
def
createSpatialConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kernelW:
Int
,
kernelH:
Int
,
strideW:
Int
=
1
,
strideH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
nGroup:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
,
withBias:
Boolean
=
true
)
:
SpatialConvolution
[
T
]
def
createSpatialConvolutionMap
(
connTable:
JTensor
,
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialConvolutionMap
[
T
]
def
createSpatialCrossMapLRN
(
size:
Int
=
5
,
alpha:
Double
=
1.0
,
beta:
Double
=
0.75
,
k:
Double
=
1.0
)
:
SpatialCrossMapLRN
[
T
]
def
createSpatialDilatedConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
dilationW:
Int
=
1
,
dilationH:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialDilatedConvolution
[
T
]
def
createSpatialDivisiveNormalization
(
nInputPlane:
Int
=
1
,
kernel:
JTensor
=
null
,
threshold:
Double
=
1e-4
,
thresval:
Double
=
1e-4
)
:
SpatialDivisiveNormalization
[
T
]
def
createSpatialFullConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
adjW:
Int
=
0
,
adjH:
Int
=
0
,
nGroup:
Int
=
1
,
noBias:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialFullConvolution
[
T
]
def
createSpatialMaxPooling
(
kW:
Int
,
kH:
Int
,
dW:
Int
,
dH:
Int
,
padW:
Int
=
0
,
padH:
Int
=
0
,
ceilMode:
Boolean
=
false
)
:
SpatialMaxPooling
[
T
]
def
createSpatialShareConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kernelW:
Int
,
kernelH:
Int
,
strideW:
Int
=
1
,
strideH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
nGroup:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
,
withBias:
Boolean
=
true
)
:
SpatialShareConvolution
[
T
]
def
createSpatialSubtractiveNormalization
(
nInputPlane:
Int
=
1
,
kernel:
JTensor
=
null
)
:
SpatialSubtractiveNormalization
[
T
]
def
createSpatialZeroPadding
(
padLeft:
Int
,
padRight:
Int
,
padTop:
Int
,
padBottom:
Int
)
:
SpatialZeroPadding
[
T
]
def
createSplitTable
(
dimension:
Int
,
nInputDims:
Int
=
1
)
:
SplitTable
[
T
]
def
createSqrt
()
:
Sqrt
[
T
]
def
createSquare
()
:
Square
[
T
]
def
createSqueeze
(
dim:
Int
=
Int.MinValue
,
numInputDims:
Int
=
Int.MinValue
)
:
Squeeze
[
T
]
def
createStep
(
stepSize:
Int
,
gamma:
Double
)
:
Step
def
createSum
(
dimension:
Int
=
1
,
nInputDims:
Int
=
1
,
sizeAverage:
Boolean
=
false
,
squeeze:
Boolean
=
true
)
:
Sum
[
T
]
def
createTanh
()
:
Tanh
[
T
]
def
createTanhShrink
()
:
TanhShrink
[
T
]
def
createTemporalConvolution
(
inputFrameSize:
Int
,
outputFrameSize:
Int
,
kernelW:
Int
,
strideW:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
TemporalConvolution
[
T
]
def
createThreshold
(
th:
Double
=
1e-6
,
v:
Double
=
0.0
,
ip:
Boolean
=
false
)
:
Threshold
[
T
]
def
createTimeDistributed
(
layer:
TensorModule
[
T
]
)
:
TimeDistributed
[
T
]
def
createTimeDistributedCriterion
(
critrn:
TensorCriterion
[
T
]
,
sizeAverage:
Boolean
=
false
)
:
TimeDistributedCriterion
[
T
]
def
createTop1Accuracy
()
:
ValidationMethod
[
T
]
def
createTop5Accuracy
()
:
ValidationMethod
[
T
]
def
createTrainSummary
(
logDir:
String
,
appName:
String
)
:
TrainSummary
def
createTranspose
(
permutations:
List
[
List
[
Int
]]
)
:
Transpose
[
T
]
def
createTreeNNAccuracy
()
:
ValidationMethod
[
T
]
def
createUnsqueeze
(
pos:
Int
,
numInputDims:
Int
=
Int.MinValue
)
:
Unsqueeze
[
T
]
def
createValidationSummary
(
logDir:
String
,
appName:
String
)
:
ValidationSummary
def
createView
(
sizes:
List
[
Int
]
,
num_input_dims:
Int
=
0
)
:
View
[
T
]
def
createVolumetricConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kT:
Int
,
kW:
Int
,
kH:
Int
,
dT:
Int
=
1
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padT:
Int
=
0
,
padW:
Int
=
0
,
padH:
Int
=
0
,
withBias:
Boolean
=
true
)
:
VolumetricConvolution
[
T
]
def
createVolumetricMaxPooling
(
kT:
Int
,
kW:
Int
,
kH:
Int
,
dT:
Int
,
dW:
Int
,
dH:
Int
,
padT:
Int
=
0
,
padW:
Int
=
0
,
padH:
Int
=
0
)
:
VolumetricMaxPooling
[
T
]
def
createXavier
()
:
Xavier
.type
def
createZeros
()
:
Zeros
.type
def
criterionBackward
(
criterion:
AbstractCriterion
[
Activity
,
Activity
,
T
]
,
input:
List
[
JTensor
]
,
inputIsTable:
Boolean
,
target:
List
[
JTensor
]
,
targetIsTable:
Boolean
)
:
List
[
JTensor
]
def
criterionForward
(
criterion:
AbstractCriterion
[
Activity
,
Activity
,
T
]
,
input:
List
[
JTensor
]
,
inputIsTable:
Boolean
,
target:
List
[
JTensor
]
,
targetIsTable:
Boolean
)
:
T
final
def
eq
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
def
equals
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
def
finalize
()
:
Unit
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
classOf[java.lang.Throwable]
)
final
def
getClass
()
:
Class
[_]
Definition Classes
AnyRef → Any
def
getWeights
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
List
[
JTensor
]
def
hashCode
()
:
Int
Definition Classes
AnyRef → Any
def
initEngine
()
:
Unit
final
def
isInstanceOf
[
T0
]
:
Boolean
Definition Classes
Any
def
jTensorsToActivity
(
input:
List
[
JTensor
]
,
isTable:
Boolean
)
:
Activity
def
loadBigDL
(
path:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
def
loadCaffe
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
defPath:
String
,
modelPath:
String
,
matchAll:
Boolean
=
true
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
def
loadCaffeModel
(
defPath:
String
,
modelPath:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
def
loadTF
(
path:
String
,
inputs:
List
[
String
]
,
outputs:
List
[
String
]
,
byteOrder:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
def
loadTorch
(
path:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
def
modelBackward
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
input:
List
[
JTensor
]
,
inputIsTable:
Boolean
,
gradOutput:
List
[
JTensor
]
,
gradOutputIsTable:
Boolean
)
:
List
[
JTensor
]
def
modelForward
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
input:
List
[
JTensor
]
,
inputIsTable:
Boolean
)
:
List
[
JTensor
]
def
modelGetParameters
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
Map
[
Any
,
Map
[
Any
,
List
[
List
[
Any
]]]]
def
modelPredictClass
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
dataRdd:
JavaRDD
[
Sample
]
)
:
JavaRDD
[
Int
]
def
modelPredictRDD
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
dataRdd:
JavaRDD
[
Sample
]
)
:
JavaRDD
[
JTensor
]
def
modelSave
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
path:
String
,
overWrite:
Boolean
)
:
Unit
def
modelTest
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
valRDD:
JavaRDD
[
Sample
]
,
batchSize:
Int
,
valMethods:
List
[
ValidationMethod
[
T
]]
)
:
List
[
TestResult
]
final
def
ne
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
notify
()
:
Unit
Definition Classes
AnyRef
final
def
notifyAll
()
:
Unit
Definition Classes
AnyRef
def
saveCaffe
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
prototxtPath:
String
,
modelPath:
String
,
useV2:
Boolean
=
true
,
overwrite:
Boolean
=
false
)
:
Unit
def
saveTF
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
inputs:
List
[
Any
]
,
path:
String
,
byteOrder:
String
,
dataFormat:
String
)
:
Unit
def
setCheckPoint
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
trigger:
Trigger
,
checkPointPath:
String
,
isOverwrite:
Boolean
)
:
Unit
def
setInitMethod
(
layer:
Initializable
,
weightInitMethod:
InitializationMethod
,
biasInitMethod:
InitializationMethod
)
:
layer
.type
def
setModelSeed
(
seed:
Long
)
:
Unit
def
setTrainSummary
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
summary:
TrainSummary
)
:
Unit
def
setValSummary
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
summary:
ValidationSummary
)
:
Unit
def
setValidation
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
batchSize:
Int
,
trigger:
Trigger
,
valRdd:
JavaRDD
[
Sample
]
,
vMethods:
List
[
ValidationMethod
[
T
]]
)
:
Unit
def
setWeights
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
weights:
List
[
JTensor
]
)
:
Unit
def
summaryReadScalar
(
summary:
Summary
,
tag:
String
)
:
List
[
List
[
Any
]]
def
summarySetTrigger
(
summary:
TrainSummary
,
summaryName:
String
,
trigger:
Trigger
)
:
TrainSummary
final
def
synchronized
[
T0
]
(
arg0: ⇒
T0
)
:
T0
Definition Classes
AnyRef
def
testSample
(
sample:
Sample
)
:
Sample
def
testTensor
(
jTensor:
JTensor
)
:
JTensor
def
toJTensor
(
tensor:
Tensor
[
T
]
)
:
JTensor
def
toPySample
(
sample:
dataset.Sample
[
T
]
)
:
Sample
def
toSample
(
record:
Sample
)
:
dataset.Sample
[
T
]
def
toString
()
:
String
Definition Classes
AnyRef → Any
def
toTensor
(
jTensor:
JTensor
)
:
Tensor
[
T
]
def
uniform
(
a:
Double
,
b:
Double
,
size:
List
[
Int
]
)
:
JTensor
def
updateParameters
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
lr:
Double
)
:
Unit
final
def
wait
()
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
,
arg1:
Int
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
Inherited from
Serializable
Inherited from
Serializable
Inherited from
AnyRef
Inherited from
Any
Ungrouped
Implementation of Python API for BigDL