com.intel.analytics.bigdl.python.api

PythonBigDL

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def createAbs(): Abs[T]

  10. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

  11. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

  12. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

  13. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

  14. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

  15. def createAdd(inputSize: Int): Add[T]

  16. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

  17. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

  18. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

  19. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

  20. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

  21. def createBilinearFiller(): BilinearFiller.type

  22. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

  23. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

  24. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

  25. def createCAddTable(inplace: Boolean = false): CAddTable[T]

  26. def createCDivTable(): CDivTable[T]

  27. def createCMaxTable(): CMaxTable[T]

  28. def createCMinTable(): CMinTable[T]

  29. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

  30. def createCMulTable(): CMulTable[T]

  31. def createCSubTable(): CSubTable[T]

  32. def createClamp(min: Int, max: Int): Clamp[T]

  33. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true): ClassNLLCriterion[T]

  34. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

  35. def createConcat(dimension: Int): Concat[T]

  36. def createConcatTable(): ConcatTable[T]

  37. def createConstInitMethod(value: Double): ConstInitMethod

  38. def createContiguous(): Contiguous[T]

  39. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

  40. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

  41. def createCosineDistance(): CosineDistance[T]

  42. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

  43. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

  44. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

  45. def createDefault(): Default

  46. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

  47. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

  48. def createDotProduct(): DotProduct[T]

  49. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

  50. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

  51. def createEcho(): Echo[T]

  52. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

  53. def createEveryEpoch(): Trigger

  54. def createExp(): Exp[T]

  55. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

  56. def createFlattenTable(): FlattenTable[T]

  57. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

  58. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

  59. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

  60. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

  61. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

  62. def createIdentity(): Identity[T]

  63. def createIndex(dimension: Int): Index[T]

  64. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

  65. def createInput(): ModuleNode[T]

  66. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

  67. def createL1Cost(): L1Cost[T]

  68. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

  69. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

  70. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

  71. def createL1Regularizer(l1: Double): L1Regularizer[T]

  72. def createL2Regularizer(l2: Double): L2Regularizer[T]

  73. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

  74. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

  75. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

  76. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

  77. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

  78. def createLog(): Log[T]

  79. def createLogSigmoid(): LogSigmoid[T]

  80. def createLogSoftMax(): LogSoftMax[T]

  81. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

  82. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

  83. def createMAE(): ValidationMethod[T]

  84. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

  85. def createMSECriterion: MSECriterion[T]

  86. def createMV(trans: Boolean = false): MV[T]

  87. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

  88. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginCriterion[T]

  89. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

  90. def createMaskedSelect(): MaskedSelect[T]

  91. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

  92. def createMaxEpoch(max: Int): Trigger

  93. def createMaxIteration(max: Int): Trigger

  94. def createMaxScore(max: Float): Trigger

  95. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

  96. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

  97. def createMinLoss(min: Float): Trigger

  98. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

  99. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

  100. def createMul(): Mul[T]

  101. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

  102. def createMultiCriterion(): MultiCriterion[T]

  103. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

  104. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

  105. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

  106. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

  107. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

  108. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

  109. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

  110. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

  111. def createOnes(): Ones.type

  112. def createOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  113. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

  114. def createPack(dimension: Int): Pack[T]

  115. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

  116. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

  117. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

  118. def createParallelTable(): ParallelTable[T]

  119. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

  120. def createPoly(power: Double, maxIteration: Int): Poly

  121. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

  122. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

  123. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

  124. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

  125. def createRandomUniform(): InitializationMethod

  126. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

  127. def createReLU(ip: Boolean = false): ReLU[T]

  128. def createReLU6(inplace: Boolean = false): ReLU6[T]

  129. def createRecurrent(): Recurrent[T]

  130. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

  131. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

  132. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

  133. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

  134. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

  135. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

  136. def createScale(size: List[Int]): Scale[T]

  137. def createSelect(dimension: Int, index: Int): Select[T]

  138. def createSelectTable(dimension: Int): SelectTable[T]

  139. def createSequential(): Sequential[T]

  140. def createSeveralIteration(interval: Int): Trigger

  141. def createSigmoid(): Sigmoid[T]

  142. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

  143. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

  144. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

  145. def createSoftMax(): SoftMax[T]

  146. def createSoftMin(): SoftMin[T]

  147. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

  148. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

  149. def createSoftSign(): SoftSign[T]

  150. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

  151. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true): SpatialAveragePooling[T]

  152. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SpatialBatchNormalization[T]

  153. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

  154. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialConvolution[T]

  155. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

  156. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0): SpatialCrossMapLRN[T]

  157. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

  158. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

  159. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

  160. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false): SpatialMaxPooling[T]

  161. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

  162. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

  163. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

  164. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

  165. def createSqrt(): Sqrt[T]

  166. def createSquare(): Square[T]

  167. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

  168. def createStep(stepSize: Int, gamma: Double): Step

  169. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

  170. def createTanh(): Tanh[T]

  171. def createTanhShrink(): TanhShrink[T]

  172. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

  173. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

  174. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

  175. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

  176. def createTop1Accuracy(): ValidationMethod[T]

  177. def createTop5Accuracy(): ValidationMethod[T]

  178. def createTrainSummary(logDir: String, appName: String): TrainSummary

  179. def createTranspose(permutations: List[List[Int]]): Transpose[T]

  180. def createTreeNNAccuracy(): ValidationMethod[T]

  181. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

  182. def createValidationSummary(logDir: String, appName: String): ValidationSummary

  183. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

  184. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true): VolumetricConvolution[T]

  185. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

  186. def createXavier(): Xavier.type

  187. def createZeros(): Zeros.type

  188. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

  189. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

  190. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  191. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  192. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  193. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  194. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

  195. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  196. def initEngine(): Unit

  197. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  198. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

  199. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

  200. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

  201. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

  202. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String): AbstractModule[Activity, Activity, T]

  203. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

  204. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

  205. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

  206. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

  207. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

  208. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[JTensor]

  209. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

  210. def modelTest(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[TestResult]

  211. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  212. final def notify(): Unit

    Definition Classes
    AnyRef
  213. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  214. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

  215. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

  216. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

  217. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

  218. def setModelSeed(seed: Long): Unit

  219. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

  220. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

  221. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

  222. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

  223. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

  224. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

  225. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  226. def testSample(sample: Sample): Sample

  227. def testTensor(jTensor: JTensor): JTensor

  228. def toJTensor(tensor: Tensor[T]): JTensor

  229. def toPySample(sample: dataset.Sample[T]): Sample

  230. def toSample(record: Sample): dataset.Sample[T]

  231. def toString(): String

    Definition Classes
    AnyRef → Any
  232. def toTensor(jTensor: JTensor): Tensor[T]

  233. def uniform(a: Double, b: Double, size: List[Int]): JTensor

  234. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

  235. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  236. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  237. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped