com.intel.analytics.bigdl.python.api

PythonBigDL

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

  9. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def createAbs(): Abs[T, T]

  11. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

  12. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

  13. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

  14. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

  15. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

  16. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

  17. def createAdd(inputSize: Int): Add[T]

  18. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

  19. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int): FeatureTransformer

  20. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

  21. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

  22. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

  23. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

  24. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

  25. def createBilinearFiller(): BilinearFiller.type

  26. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

  27. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

  28. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

  29. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

  30. def createBytesToMat(byteKey: String): BytesToMat

  31. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

  32. def createCAddTable(inplace: Boolean = false): CAddTable[T]

  33. def createCAveTable(inplace: Boolean = false): CAveTable[T]

  34. def createCDivTable(): CDivTable[T]

  35. def createCMaxTable(): CMaxTable[T]

  36. def createCMinTable(): CMinTable[T]

  37. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

  38. def createCMulTable(): CMulTable[T]

  39. def createCSubTable(): CSubTable[T]

  40. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

  41. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

  42. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

  43. def createChannelOrder(): ChannelOrder

  44. def createClamp(min: Int, max: Int): Clamp[T, T]

  45. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

  46. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

  47. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

  48. def createConcat(dimension: Int): Concat[T]

  49. def createConcatTable(): ConcatTable[T]

  50. def createConstInitMethod(value: Double): ConstInitMethod

  51. def createContiguous(): Contiguous[T]

  52. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

  53. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

  54. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

  55. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

  56. def createCosineDistance(): CosineDistance[T]

  57. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

  58. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

  59. def createCosineProximityCriterion(): CosineProximityCriterion[T]

  60. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

  61. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

  62. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

  63. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

  64. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  65. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

  66. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

  67. def createDefault(): Default

  68. def createDenseToSparse(): DenseToSparse[T]

  69. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

  70. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

  71. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

  72. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

  73. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

  74. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  75. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

  76. def createDotProduct(): DotProduct[T]

  77. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

  78. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T, T]

  79. def createEcho(): Echo[T]

  80. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

  81. def createEveryEpoch(): Trigger

  82. def createExp(): Exp[T]

  83. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

  84. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

  85. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

  86. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

  87. def createFlattenTable(): FlattenTable[T]

  88. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

  89. def createGaussianCriterion(): GaussianCriterion[T]

  90. def createGaussianDropout(rate: Double): GaussianDropout[T]

  91. def createGaussianNoise(stddev: Double): GaussianNoise[T]

  92. def createGaussianSampler(): GaussianSampler[T]

  93. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

  94. def createHFlip(): HFlip

  95. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

  96. def createHardSigmoid: HardSigmoid[T]

  97. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T, T]

  98. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

  99. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

  100. def createHue(deltaLow: Double, deltaHigh: Double): Hue

  101. def createIdentity(): Identity[T]

  102. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

  103. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

  104. def createIndex(dimension: Int): Index[T]

  105. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

  106. def createInput(): ModuleNode[T]

  107. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

  108. def createKLDCriterion(): KLDCriterion[T]

  109. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

  110. def createL1Cost(): L1Cost[T]

  111. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

  112. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

  113. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

  114. def createL1Regularizer(l1: Double): L1Regularizer[T]

  115. def createL2Regularizer(l2: Double): L2Regularizer[T]

  116. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

  117. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

  118. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

  119. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

  120. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

  121. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

  122. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

  123. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

  124. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

  125. def createLog(): Log[T, T]

  126. def createLogSigmoid(): LogSigmoid[T]

  127. def createLogSoftMax(): LogSoftMax[T]

  128. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

  129. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

  130. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

  131. def createMAE(): ValidationMethod[T]

  132. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

  133. def createMSECriterion: MSECriterion[T]

  134. def createMV(trans: Boolean = false): MV[T]

  135. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

  136. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

  137. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

  138. def createMaskedSelect(): MaskedSelect[T]

  139. def createMasking(maskValue: Double): Masking[T]

  140. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

  141. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

  142. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

  143. def createMaxEpoch(max: Int): Trigger

  144. def createMaxIteration(max: Int): Trigger

  145. def createMaxScore(max: Float): Trigger

  146. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

  147. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T, T]

  148. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

  149. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

  150. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

  151. def createMinLoss(min: Float): Trigger

  152. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

  153. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

  154. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

  155. def createMul(): Mul[T]

  156. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

  157. def createMultiCriterion(): MultiCriterion[T]

  158. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

  159. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

  160. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

  161. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

  162. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

  163. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

  164. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

  165. def createNegative(inplace: Boolean): Negative[T]

  166. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

  167. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

  168. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

  169. def createOnes(): Ones.type

  170. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

  171. def createPack(dimension: Int): Pack[T]

  172. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

  173. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

  174. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

  175. def createParallelTable(): ParallelTable[T]

  176. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

  177. def createPixelNormalize(means: List[Double]): PixelNormalizer

  178. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

  179. def createPoissonCriterion: PoissonCriterion[T]

  180. def createPoly(power: Double, maxIteration: Int): Poly

  181. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T, T]

  182. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

  183. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

  184. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

  185. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

  186. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

  187. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

  188. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

  189. def createRandomSampler(): FeatureTransformer

  190. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

  191. def createRandomUniform(): InitializationMethod

  192. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

  193. def createReLU(ip: Boolean = false): ReLU[T]

  194. def createReLU6(inplace: Boolean = false): ReLU6[T, T]

  195. def createRecurrent(): Recurrent[T]

  196. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

  197. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

  198. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

  199. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

  200. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean): ResizeBilinear[T]

  201. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

  202. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

  203. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

  204. def createRoiNormalize(): RoiNormalize

  205. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

  206. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

  207. def createRoiResize(normalized: Boolean): RoiResize

  208. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

  209. def createSReLU(shareAxes: ArrayList[Int] = null): SReLU[T]

  210. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

  211. def createScale(size: List[Int]): Scale[T]

  212. def createSelect(dimension: Int, index: Int): Select[T]

  213. def createSelectTable(dimension: Int): SelectTable[T]

  214. def createSequential(): Sequential[T]

  215. def createSeveralIteration(interval: Int): Trigger

  216. def createSigmoid(): Sigmoid[T]

  217. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

  218. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

  219. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

  220. def createSoftMax(): SoftMax[T]

  221. def createSoftMin(): SoftMin[T]

  222. def createSoftPlus(beta: Double = 1.0): SoftPlus[T, T]

  223. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

  224. def createSoftSign(): SoftSign[T, T]

  225. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

  226. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

  227. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

  228. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

  229. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

  230. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

  231. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

  232. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

  233. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

  234. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

  235. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

  236. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

  237. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

  238. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

  239. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

  240. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

  241. def createSpatialSeperableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeperableConvolution[T]

  242. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

  243. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

  244. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

  245. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

  246. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

  247. def createSqrt(): Sqrt[T, T]

  248. def createSquare(): Square[T, T]

  249. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

  250. def createStep(stepSize: Int, gamma: Double): Step

  251. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T, T]

  252. def createTanh(): Tanh[T]

  253. def createTanhShrink(): TanhShrink[T]

  254. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

  255. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

  256. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

  257. def createTile(dim: Int, copies: Int): Tile[T]

  258. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

  259. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

  260. def createTop1Accuracy(): ValidationMethod[T]

  261. def createTop5Accuracy(): ValidationMethod[T]

  262. def createTrainSummary(logDir: String, appName: String): TrainSummary

  263. def createTranspose(permutations: List[List[Int]]): Transpose[T]

  264. def createTreeNNAccuracy(): ValidationMethod[T]

  265. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

  266. def createUpSampling1D(length: Int): UpSampling1D[T]

  267. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

  268. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

  269. def createValidationSummary(logDir: String, appName: String): ValidationSummary

  270. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

  271. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

  272. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

  273. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

  274. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

  275. def createXavier(): Xavier.type

  276. def createZeros(): Zeros.type

  277. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

  278. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

  279. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

  280. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

  281. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

  282. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

  283. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

  284. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

  285. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  286. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  287. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

  288. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  289. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

  290. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

  291. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

  292. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

  293. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  294. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

  295. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

  296. def getHiddenState(rec: Recurrent[T]): JActivity

  297. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

  298. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  299. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

  300. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

  301. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

  302. def initEngine(): Unit

  303. def isDistributed(imageFrame: ImageFrame): Boolean

  304. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  305. def isLocal(imageFrame: ImageFrame): Boolean

  306. def isWithWeights(module: Module[T]): Boolean

  307. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

  308. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

  309. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

  310. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

  311. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

  312. def loadOptimMethod(path: String): OptimMethod[T]

  313. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null): AbstractModule[Activity, Activity, T]

  314. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

  315. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

  316. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

  317. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

  318. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

  319. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

  320. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

  321. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

  322. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

  323. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

  324. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[JTensor]

  325. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

  326. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  327. final def notify(): Unit

    Definition Classes
    AnyRef
  328. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  329. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[JTensor]

  330. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

  331. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

  332. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

  333. def readParquet(path: String, sqlContext: SQLContext): DistributedImageFrame

  334. def redirectSparkLogs(logPath: String): Unit

  335. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

  336. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

  337. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

  338. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

  339. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

  340. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

  341. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

  342. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

  343. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

  344. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

  345. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

  346. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

  347. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

  348. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  349. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

  350. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

  351. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

  352. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

  353. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

  354. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

  355. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

  356. def setModelSeed(seed: Long): Unit

  357. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

  358. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

  359. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

  360. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

  361. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

  362. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

  363. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

  364. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

  365. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

  366. def showBigDlInfoLogs(): Unit

  367. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

  368. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

  369. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  370. def testSample(sample: Sample): Sample

  371. def testTensor(jTensor: JTensor): JTensor

  372. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

  373. def toJSample(record: Sample): dataset.Sample[T]

  374. def toJTensor(tensor: Tensor[T]): JTensor

  375. def toPySample(sample: dataset.Sample[T]): Sample

  376. def toString(): String

    Definition Classes
    AnyRef → Any
  377. def toTensor(jTensor: JTensor): Tensor[T]

  378. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

  379. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

  380. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

  381. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

  382. def uniform(a: Double, b: Double, size: List[Int]): JTensor

  383. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

  384. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  385. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  386. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped