com.intel.analytics.bigdl.python.api

PythonBigDLValidator

class PythonBigDLValidator[T] extends PythonBigDL[T]

Linear Supertypes
PythonBigDL[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDLValidator
  2. PythonBigDL
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDLValidator()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Definition Classes
    PythonBigDL
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Definition Classes
    PythonBigDL
  9. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def createAbs(): Abs[T, T]

    Definition Classes
    PythonBigDL
  11. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Definition Classes
    PythonBigDL
  12. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Definition Classes
    PythonBigDL
  13. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Definition Classes
    PythonBigDL
  14. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Definition Classes
    PythonBigDL
  15. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Definition Classes
    PythonBigDL
  16. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Definition Classes
    PythonBigDL
  17. def createAdd(inputSize: Int): Add[T]

    Definition Classes
    PythonBigDL
  18. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Definition Classes
    PythonBigDL
  19. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int): FeatureTransformer

    Definition Classes
    PythonBigDL
  20. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Definition Classes
    PythonBigDL
  21. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Definition Classes
    PythonBigDL
  22. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Definition Classes
    PythonBigDL
  23. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Definition Classes
    PythonBigDL
  24. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Definition Classes
    PythonBigDL
  25. def createBilinearFiller(): BilinearFiller.type

    Definition Classes
    PythonBigDL
  26. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Definition Classes
    PythonBigDL
  27. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Definition Classes
    PythonBigDL
  28. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Definition Classes
    PythonBigDL
  29. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Definition Classes
    PythonBigDL
  30. def createBytesToMat(byteKey: String): BytesToMat

    Definition Classes
    PythonBigDL
  31. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Definition Classes
    PythonBigDL
  32. def createCAddTable(inplace: Boolean = false): CAddTable[T]

    Definition Classes
    PythonBigDL
  33. def createCAveTable(inplace: Boolean = false): CAveTable[T]

    Definition Classes
    PythonBigDL
  34. def createCDivTable(): CDivTable[T]

    Definition Classes
    PythonBigDL
  35. def createCMaxTable(): CMaxTable[T]

    Definition Classes
    PythonBigDL
  36. def createCMinTable(): CMinTable[T]

    Definition Classes
    PythonBigDL
  37. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Definition Classes
    PythonBigDL
  38. def createCMulTable(): CMulTable[T]

    Definition Classes
    PythonBigDL
  39. def createCSubTable(): CSubTable[T]

    Definition Classes
    PythonBigDL
  40. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Definition Classes
    PythonBigDL
  41. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Definition Classes
    PythonBigDL
  42. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

    Definition Classes
    PythonBigDL
  43. def createChannelOrder(): ChannelOrder

    Definition Classes
    PythonBigDL
  44. def createClamp(min: Int, max: Int): Clamp[T, T]

    Definition Classes
    PythonBigDL
  45. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

    Definition Classes
    PythonBigDL
  46. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Definition Classes
    PythonBigDL
  47. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

    Definition Classes
    PythonBigDL
  48. def createConcat(dimension: Int): Concat[T]

    Definition Classes
    PythonBigDL
  49. def createConcatTable(): ConcatTable[T]

    Definition Classes
    PythonBigDL
  50. def createConstInitMethod(value: Double): ConstInitMethod

    Definition Classes
    PythonBigDL
  51. def createContiguous(): Contiguous[T]

    Definition Classes
    PythonBigDL
  52. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Definition Classes
    PythonBigDL
  53. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Definition Classes
    PythonBigDL
  54. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Definition Classes
    PythonBigDL
  55. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Definition Classes
    PythonBigDL
  56. def createCosineDistance(): CosineDistance[T]

    Definition Classes
    PythonBigDL
  57. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Definition Classes
    PythonBigDL
  58. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  59. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Definition Classes
    PythonBigDL
  60. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

    Definition Classes
    PythonBigDL
  61. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

    Definition Classes
    PythonBigDL
  62. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Definition Classes
    PythonBigDL
  63. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Definition Classes
    PythonBigDL
  64. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  65. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Definition Classes
    PythonBigDL
  66. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Definition Classes
    PythonBigDL
  67. def createDefault(): Default

    Definition Classes
    PythonBigDL
  68. def createDenseToSparse(): DenseToSparse[T]

    Definition Classes
    PythonBigDL
  69. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Definition Classes
    PythonBigDL
  70. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

    Definition Classes
    PythonBigDL
  71. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Definition Classes
    PythonBigDL
  72. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Definition Classes
    PythonBigDL
  73. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Definition Classes
    PythonBigDL
  74. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  75. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Definition Classes
    PythonBigDL
  76. def createDotProduct(): DotProduct[T]

    Definition Classes
    PythonBigDL
  77. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Definition Classes
    PythonBigDL
  78. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T, T]

    Definition Classes
    PythonBigDL
  79. def createEcho(): Echo[T]

    Definition Classes
    PythonBigDL
  80. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Definition Classes
    PythonBigDL
  81. def createEveryEpoch(): Trigger

    Definition Classes
    PythonBigDL
  82. def createExp(): Exp[T]

    Definition Classes
    PythonBigDL
  83. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

    Definition Classes
    PythonBigDL
  84. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Definition Classes
    PythonBigDL
  85. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

    Definition Classes
    PythonBigDL
  86. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Definition Classes
    PythonBigDL
  87. def createFlattenTable(): FlattenTable[T]

    Definition Classes
    PythonBigDL
  88. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Definition Classes
    PythonBigDL
  89. def createGaussianCriterion(): GaussianCriterion[T]

    Definition Classes
    PythonBigDL
  90. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Definition Classes
    PythonBigDL
  91. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Definition Classes
    PythonBigDL
  92. def createGaussianSampler(): GaussianSampler[T]

    Definition Classes
    PythonBigDL
  93. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Definition Classes
    PythonBigDL
  94. def createHFlip(): HFlip

    Definition Classes
    PythonBigDL
  95. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Definition Classes
    PythonBigDL
  96. def createHardSigmoid: HardSigmoid[T]

    Definition Classes
    PythonBigDL
  97. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T, T]

    Definition Classes
    PythonBigDL
  98. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

    Definition Classes
    PythonBigDL
  99. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  100. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Definition Classes
    PythonBigDL
  101. def createIdentity(): Identity[T]

    Definition Classes
    PythonBigDL
  102. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

    Definition Classes
    PythonBigDL
  103. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Definition Classes
    PythonBigDL
  104. def createIndex(dimension: Int): Index[T]

    Definition Classes
    PythonBigDL
  105. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Definition Classes
    PythonBigDL
  106. def createInput(): ModuleNode[T]

    Definition Classes
    PythonBigDL
  107. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Definition Classes
    PythonBigDL
  108. def createKLDCriterion(): KLDCriterion[T]

    Definition Classes
    PythonBigDL
  109. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Definition Classes
    PythonBigDL
  110. def createL1Cost(): L1Cost[T]

    Definition Classes
    PythonBigDL
  111. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  112. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Definition Classes
    PythonBigDL
  113. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Definition Classes
    PythonBigDL
  114. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Definition Classes
    PythonBigDL
  115. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Definition Classes
    PythonBigDL
  116. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Definition Classes
    PythonBigDL
  117. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Definition Classes
    PythonBigDL
  118. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Definition Classes
    PythonBigDL
  119. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Definition Classes
    PythonBigDL
  120. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Definition Classes
    PythonBigDL
  121. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Definition Classes
    PythonBigDL
  122. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  123. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

    Definition Classes
    PythonBigDL
  124. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

    Definition Classes
    PythonBigDL
  125. def createLog(): Log[T, T]

    Definition Classes
    PythonBigDL
  126. def createLogSigmoid(): LogSigmoid[T]

    Definition Classes
    PythonBigDL
  127. def createLogSoftMax(): LogSoftMax[T]

    Definition Classes
    PythonBigDL
  128. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Definition Classes
    PythonBigDL
  129. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

    Definition Classes
    PythonBigDL
  130. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  131. def createMAE(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  132. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Definition Classes
    PythonBigDL
  133. def createMSECriterion: MSECriterion[T]

    Definition Classes
    PythonBigDL
  134. def createMV(trans: Boolean = false): MV[T]

    Definition Classes
    PythonBigDL
  135. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Definition Classes
    PythonBigDL
  136. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

    Definition Classes
    PythonBigDL
  137. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Definition Classes
    PythonBigDL
  138. def createMaskedSelect(): MaskedSelect[T]

    Definition Classes
    PythonBigDL
  139. def createMasking(maskValue: Double): Masking[T]

    Definition Classes
    PythonBigDL
  140. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

    Definition Classes
    PythonBigDL
  141. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

    Definition Classes
    PythonBigDL
  142. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Definition Classes
    PythonBigDL
  143. def createMaxEpoch(max: Int): Trigger

    Definition Classes
    PythonBigDL
  144. def createMaxIteration(max: Int): Trigger

    Definition Classes
    PythonBigDL
  145. def createMaxScore(max: Float): Trigger

    Definition Classes
    PythonBigDL
  146. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

    Definition Classes
    PythonBigDL
  147. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T, T]

    Definition Classes
    PythonBigDL
  148. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Definition Classes
    PythonBigDL
  149. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Definition Classes
    PythonBigDL
  150. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Definition Classes
    PythonBigDL
  151. def createMinLoss(min: Float): Trigger

    Definition Classes
    PythonBigDL
  152. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Definition Classes
    PythonBigDL
  153. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Definition Classes
    PythonBigDL
  154. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

    Definition Classes
    PythonBigDL
  155. def createMul(): Mul[T]

    Definition Classes
    PythonBigDL
  156. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Definition Classes
    PythonBigDL
  157. def createMultiCriterion(): MultiCriterion[T]

    Definition Classes
    PythonBigDL
  158. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Definition Classes
    PythonBigDL
  159. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Definition Classes
    PythonBigDL
  160. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Definition Classes
    PythonBigDL
  161. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Definition Classes
    PythonBigDL
  162. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Definition Classes
    PythonBigDL
  163. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Definition Classes
    PythonBigDL
  164. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Definition Classes
    PythonBigDL
  165. def createNegative(inplace: Boolean): Negative[T]

    Definition Classes
    PythonBigDL
  166. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Definition Classes
    PythonBigDL
  167. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Definition Classes
    PythonBigDL
  168. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

    Definition Classes
    PythonBigDL
  169. def createOnes(): Ones.type

    Definition Classes
    PythonBigDL
  170. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Definition Classes
    PythonBigDL
  171. def createPack(dimension: Int): Pack[T]

    Definition Classes
    PythonBigDL
  172. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Definition Classes
    PythonBigDL
  173. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Definition Classes
    PythonBigDL
  174. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Definition Classes
    PythonBigDL
  175. def createParallelTable(): ParallelTable[T]

    Definition Classes
    PythonBigDL
  176. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Definition Classes
    PythonBigDL
  177. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Definition Classes
    PythonBigDL
  178. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Definition Classes
    PythonBigDL
  179. def createPoissonCriterion: PoissonCriterion[T]

    Definition Classes
    PythonBigDL
  180. def createPoly(power: Double, maxIteration: Int): Poly

    Definition Classes
    PythonBigDL
  181. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T, T]

    Definition Classes
    PythonBigDL
  182. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

    Definition Classes
    PythonBigDL
  183. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

    Definition Classes
    PythonBigDL
  184. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Definition Classes
    PythonBigDL
  185. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Definition Classes
    PythonBigDL
  186. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

    Definition Classes
    PythonBigDL
  187. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Definition Classes
    PythonBigDL
  188. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Definition Classes
    PythonBigDL
  189. def createRandomSampler(): FeatureTransformer

    Definition Classes
    PythonBigDL
  190. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Definition Classes
    PythonBigDL
  191. def createRandomUniform(): InitializationMethod

    Definition Classes
    PythonBigDL
  192. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Definition Classes
    PythonBigDL
  193. def createReLU(ip: Boolean = false): ReLU[T]

    Definition Classes
    PythonBigDL
  194. def createReLU6(inplace: Boolean = false): ReLU6[T, T]

    Definition Classes
    PythonBigDL
  195. def createRecurrent(): Recurrent[T]

    Definition Classes
    PythonBigDL
  196. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Definition Classes
    PythonBigDL
  197. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Definition Classes
    PythonBigDL
  198. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Definition Classes
    PythonBigDL
  199. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

    Definition Classes
    PythonBigDL
  200. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean): ResizeBilinear[T]

    Definition Classes
    PythonBigDL
  201. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Definition Classes
    PythonBigDL
  202. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Definition Classes
    PythonBigDL
  203. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

    Definition Classes
    PythonBigDL
  204. def createRoiNormalize(): RoiNormalize

    Definition Classes
    PythonBigDL
  205. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Definition Classes
    PythonBigDL
  206. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Definition Classes
    PythonBigDL
  207. def createRoiResize(normalized: Boolean): RoiResize

    Definition Classes
    PythonBigDL
  208. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Definition Classes
    PythonBigDL
  209. def createSReLU(shareAxes: ArrayList[Int] = null): SReLU[T]

    Definition Classes
    PythonBigDL
  210. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Definition Classes
    PythonBigDL
  211. def createScale(size: List[Int]): Scale[T]

    Definition Classes
    PythonBigDL
  212. def createSelect(dimension: Int, index: Int): Select[T]

    Definition Classes
    PythonBigDL
  213. def createSelectTable(dimension: Int): SelectTable[T]

    Definition Classes
    PythonBigDL
  214. def createSequential(): Sequential[T]

    Definition Classes
    PythonBigDL
  215. def createSeveralIteration(interval: Int): Trigger

    Definition Classes
    PythonBigDL
  216. def createSigmoid(): Sigmoid[T]

    Definition Classes
    PythonBigDL
  217. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Definition Classes
    PythonBigDL
  218. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Definition Classes
    PythonBigDL
  219. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Definition Classes
    PythonBigDL
  220. def createSoftMax(): SoftMax[T]

    Definition Classes
    PythonBigDL
  221. def createSoftMin(): SoftMin[T]

    Definition Classes
    PythonBigDL
  222. def createSoftPlus(beta: Double = 1.0): SoftPlus[T, T]

    Definition Classes
    PythonBigDL
  223. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Definition Classes
    PythonBigDL
  224. def createSoftSign(): SoftSign[T, T]

    Definition Classes
    PythonBigDL
  225. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Definition Classes
    PythonBigDL
  226. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Definition Classes
    PythonBigDL
  227. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Definition Classes
    PythonBigDL
  228. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Definition Classes
    PythonBigDL
  229. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

    Definition Classes
    PythonBigDL
  230. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Definition Classes
    PythonBigDL
  231. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Definition Classes
    PythonBigDL
  232. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Definition Classes
    PythonBigDL
  233. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

    Definition Classes
    PythonBigDL
  234. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Definition Classes
    PythonBigDL
  235. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Definition Classes
    PythonBigDL
  236. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

    Definition Classes
    PythonBigDL
  237. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

    Definition Classes
    PythonBigDL
  238. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

    Definition Classes
    PythonBigDL
  239. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Definition Classes
    PythonBigDL
  240. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Definition Classes
    PythonBigDL
  241. def createSpatialSeperableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeperableConvolution[T]

    Definition Classes
    PythonBigDL
  242. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Definition Classes
    PythonBigDL
  243. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Definition Classes
    PythonBigDL
  244. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Definition Classes
    PythonBigDL
  245. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Definition Classes
    PythonBigDL
  246. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Definition Classes
    PythonBigDL
  247. def createSqrt(): Sqrt[T, T]

    Definition Classes
    PythonBigDL
  248. def createSquare(): Square[T, T]

    Definition Classes
    PythonBigDL
  249. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Definition Classes
    PythonBigDL
  250. def createStep(stepSize: Int, gamma: Double): Step

    Definition Classes
    PythonBigDL
  251. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T, T]

    Definition Classes
    PythonBigDL
  252. def createTanh(): Tanh[T]

    Definition Classes
    PythonBigDL
  253. def createTanhShrink(): TanhShrink[T]

    Definition Classes
    PythonBigDL
  254. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Definition Classes
    PythonBigDL
  255. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Definition Classes
    PythonBigDL
  256. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Definition Classes
    PythonBigDL
  257. def createTile(dim: Int, copies: Int): Tile[T]

    Definition Classes
    PythonBigDL
  258. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Definition Classes
    PythonBigDL
  259. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

    Definition Classes
    PythonBigDL
  260. def createTop1Accuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  261. def createTop5Accuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  262. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Definition Classes
    PythonBigDL
  263. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Definition Classes
    PythonBigDL
  264. def createTreeNNAccuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  265. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Definition Classes
    PythonBigDL
  266. def createUpSampling1D(length: Int): UpSampling1D[T]

    Definition Classes
    PythonBigDL
  267. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Definition Classes
    PythonBigDL
  268. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Definition Classes
    PythonBigDL
  269. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Definition Classes
    PythonBigDL
  270. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Definition Classes
    PythonBigDL
  271. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

    Definition Classes
    PythonBigDL
  272. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Definition Classes
    PythonBigDL
  273. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Definition Classes
    PythonBigDL
  274. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Definition Classes
    PythonBigDL
  275. def createXavier(): Xavier.type

    Definition Classes
    PythonBigDL
  276. def createZeros(): Zeros.type

    Definition Classes
    PythonBigDL
  277. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  278. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

    Definition Classes
    PythonBigDL
  279. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Definition Classes
    PythonBigDL
  280. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  281. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  282. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Definition Classes
    PythonBigDL
  283. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  284. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  285. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  286. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  287. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  288. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  289. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Definition Classes
    PythonBigDL
  290. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Definition Classes
    PythonBigDL
  291. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Definition Classes
    PythonBigDL
  292. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  293. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  294. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Definition Classes
    PythonBigDL
  295. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Definition Classes
    PythonBigDL
  296. def getHiddenState(rec: Recurrent[T]): JActivity

    Definition Classes
    PythonBigDL
  297. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Definition Classes
    PythonBigDL
  298. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  299. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Definition Classes
    PythonBigDL
  300. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

    Definition Classes
    PythonBigDL
  301. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Definition Classes
    PythonBigDL
  302. def initEngine(): Unit

    Definition Classes
    PythonBigDL
  303. def isDistributed(imageFrame: ImageFrame): Boolean

    Definition Classes
    PythonBigDL
  304. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  305. def isLocal(imageFrame: ImageFrame): Boolean

    Definition Classes
    PythonBigDL
  306. def isWithWeights(module: Module[T]): Boolean

    Definition Classes
    PythonBigDL
  307. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

    Definition Classes
    PythonBigDL
  308. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  309. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  310. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  311. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  312. def loadOptimMethod(path: String): OptimMethod[T]

    Definition Classes
    PythonBigDL
  313. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  314. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  315. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

    Definition Classes
    PythonBigDL
  316. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Definition Classes
    PythonBigDL
  317. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Definition Classes
    PythonBigDL
  318. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  319. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Definition Classes
    PythonBigDL
  320. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  321. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Definition Classes
    PythonBigDL
  322. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Definition Classes
    PythonBigDL
  323. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Definition Classes
    PythonBigDL
  324. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  325. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  326. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  327. final def notify(): Unit

    Definition Classes
    AnyRef
  328. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  329. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[JTensor]

    Definition Classes
    PythonBigDL
  330. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Definition Classes
    PythonBigDL
  331. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Definition Classes
    PythonBigDL
  332. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Definition Classes
    PythonBigDL
  333. def readParquet(path: String, sqlContext: SQLContext): DistributedImageFrame

    Definition Classes
    PythonBigDL
  334. def redirectSparkLogs(logPath: String): Unit

    Definition Classes
    PythonBigDL
  335. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  336. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Definition Classes
    PythonBigDL
  337. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Definition Classes
    PythonBigDL
  338. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Definition Classes
    PythonBigDL
  339. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Definition Classes
    PythonBigDL
  340. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

    Save tensor dictionary to a Java hashmap object file

    Definition Classes
    PythonBigDL
  341. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Definition Classes
    PythonBigDL
  342. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  343. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Definition Classes
    PythonBigDL
  344. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Definition Classes
    PythonBigDL
  345. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  346. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Definition Classes
    PythonBigDL
  347. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Definition Classes
    PythonBigDL
  348. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  349. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Definition Classes
    PythonBigDL
  350. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Definition Classes
    PythonBigDL
  351. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Definition Classes
    PythonBigDL
  352. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Definition Classes
    PythonBigDL
  353. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Definition Classes
    PythonBigDL
  354. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Definition Classes
    PythonBigDL
  355. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Definition Classes
    PythonBigDL
  356. def setModelSeed(seed: Long): Unit

    Definition Classes
    PythonBigDL
  357. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Definition Classes
    PythonBigDL
  358. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Definition Classes
    PythonBigDL
  359. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Definition Classes
    PythonBigDL
  360. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Definition Classes
    PythonBigDL
  361. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Definition Classes
    PythonBigDL
  362. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Definition Classes
    PythonBigDL
  363. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  364. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  365. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Definition Classes
    PythonBigDL
  366. def showBigDlInfoLogs(): Unit

    Definition Classes
    PythonBigDL
  367. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Definition Classes
    PythonBigDL
  368. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Definition Classes
    PythonBigDL
  369. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  370. def testActivityWithTableOfTable(): JActivity

  371. def testActivityWithTableOfTensor(): JActivity

  372. def testActivityWithTensor(): JActivity

  373. def testDict(): Map[String, String]

  374. def testDictJMapJTensor(): Map[String, Map[String, JTensor]]

  375. def testDictJTensor(): Map[String, JTensor]

  376. def testSample(sample: Sample): Sample

    Definition Classes
    PythonBigDL
  377. def testTensor(jTensor: JTensor): JTensor

    Definition Classes
    PythonBigDL
  378. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

    Definition Classes
    PythonBigDL
  379. def toJSample(record: Sample): dataset.Sample[T]

    Definition Classes
    PythonBigDL
  380. def toJTensor(tensor: Tensor[T]): JTensor

    Definition Classes
    PythonBigDL
  381. def toPySample(sample: dataset.Sample[T]): Sample

    Definition Classes
    PythonBigDL
  382. def toString(): String

    Definition Classes
    AnyRef → Any
  383. def toTensor(jTensor: JTensor): Tensor[T]

    Definition Classes
    PythonBigDL
  384. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  385. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Definition Classes
    PythonBigDL
  386. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Definition Classes
    PythonBigDL
  387. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  388. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Definition Classes
    PythonBigDL
  389. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Definition Classes
    PythonBigDL
  390. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  391. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  392. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from PythonBigDL[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped