Class/Object

com.intel.analytics.bigdl.python.api

PythonBigDLKeras

Related Docs: object PythonBigDLKeras | package api

Permalink

class PythonBigDLKeras[T] extends PythonBigDL[T]

Linear Supertypes
PythonBigDL[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PythonBigDLKeras
  2. PythonBigDL
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDLKeras()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  5. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

    Permalink
    Definition Classes
    PythonBigDL
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def compile(module: KerasModel[T], optimizer: OptimMethod[T], loss: Criterion[T], metrics: List[ValidationMethod[T]] = null): Unit

    Permalink
  10. def createAbs(): Abs[T]

    Permalink
    Definition Classes
    PythonBigDL
  11. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  12. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Permalink
    Definition Classes
    PythonBigDL
  13. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Permalink
    Definition Classes
    PythonBigDL
  14. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Permalink
    Definition Classes
    PythonBigDL
  15. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Permalink
    Definition Classes
    PythonBigDL
  16. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Permalink
    Definition Classes
    PythonBigDL
  17. def createAdd(inputSize: Int): Add[T]

    Permalink
    Definition Classes
    PythonBigDL
  18. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Permalink
    Definition Classes
    PythonBigDL
  19. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  20. def createAttention(hiddenSize: Int, numHeads: Int, attentionDropout: Float): Attention[T]

    Permalink
    Definition Classes
    PythonBigDL
  21. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  22. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  23. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Permalink
    Definition Classes
    PythonBigDL
  24. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  25. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Permalink
    Definition Classes
    PythonBigDL
  26. def createBilinearFiller(): BilinearFiller.type

    Permalink
    Definition Classes
    PythonBigDL
  27. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Permalink
    Definition Classes
    PythonBigDL
  28. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Permalink
    Definition Classes
    PythonBigDL
  29. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Permalink
    Definition Classes
    PythonBigDL
  30. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Permalink
    Definition Classes
    PythonBigDL
  31. def createBytesToMat(byteKey: String): BytesToMat

    Permalink
    Definition Classes
    PythonBigDL
  32. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Permalink
    Definition Classes
    PythonBigDL
  33. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

    Permalink
    Definition Classes
    PythonBigDL
  34. def createCAveTable(inplace: Boolean = false): CAveTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  35. def createCDivTable(): CDivTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  36. def createCMaxTable(): CMaxTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  37. def createCMinTable(): CMinTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  38. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Permalink
    Definition Classes
    PythonBigDL
  39. def createCMulTable(): CMulTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  40. def createCSubTable(): CSubTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  41. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Permalink
    Definition Classes
    PythonBigDL
  42. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Permalink
    Definition Classes
    PythonBigDL
  43. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  44. def createChannelOrder(): ChannelOrder

    Permalink
    Definition Classes
    PythonBigDL
  45. def createChannelScaledNormalizer(meanR: Int, meanG: Int, meanB: Int, scale: Double): ChannelScaledNormalizer

    Permalink
    Definition Classes
    PythonBigDL
  46. def createClamp(min: Int, max: Int): Clamp[T]

    Permalink
    Definition Classes
    PythonBigDL
  47. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  48. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  49. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

    Permalink
    Definition Classes
    PythonBigDL
  50. def createConcat(dimension: Int): Concat[T]

    Permalink
    Definition Classes
    PythonBigDL
  51. def createConcatTable(): ConcatTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  52. def createConstInitMethod(value: Double): ConstInitMethod

    Permalink
    Definition Classes
    PythonBigDL
  53. def createContiguous(): Contiguous[T]

    Permalink
    Definition Classes
    PythonBigDL
  54. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Permalink
    Definition Classes
    PythonBigDL
  55. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Permalink
    Definition Classes
    PythonBigDL
  56. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  57. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Permalink
    Definition Classes
    PythonBigDL
  58. def createCosineDistance(): CosineDistance[T]

    Permalink
    Definition Classes
    PythonBigDL
  59. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  60. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  61. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  62. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  63. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  64. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  65. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

    Permalink
    Definition Classes
    PythonBigDL
  66. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

    Permalink
    Definition Classes
    PythonBigDL
  67. def createDefault(): Default

    Permalink
    Definition Classes
    PythonBigDL
  68. def createDenseToSparse(): DenseToSparse[T]

    Permalink
    Definition Classes
    PythonBigDL
  69. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Permalink
    Definition Classes
    PythonBigDL
  70. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

    Permalink
    Definition Classes
    PythonBigDL
  71. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Permalink
    Definition Classes
    PythonBigDL
  72. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  73. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  74. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  75. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  76. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  77. def createDotProduct(): DotProduct[T]

    Permalink
    Definition Classes
    PythonBigDL
  78. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  79. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Permalink
    Definition Classes
    PythonBigDL
  80. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

    Permalink
    Definition Classes
    PythonBigDL
  81. def createEcho(): Echo[T]

    Permalink
    Definition Classes
    PythonBigDL
  82. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Permalink
    Definition Classes
    PythonBigDL
  83. def createEveryEpoch(): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  84. def createExp(): Exp[T]

    Permalink
    Definition Classes
    PythonBigDL
  85. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

    Permalink
    Definition Classes
    PythonBigDL
  86. def createExpandSize(targetSizes: List[Int]): ExpandSize[T]

    Permalink
    Definition Classes
    PythonBigDL
  87. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Permalink
    Definition Classes
    PythonBigDL
  88. def createFPN(in_channels_list: List[Int], out_channels: Int, top_blocks: Int = 0, in_channels_of_p6p7: Int = 0, out_channels_of_p6p7: Int = 0): FPN[T]

    Permalink
    Definition Classes
    PythonBigDL
  89. def createFeedForwardNetwork(hiddenSize: Int, filterSize: Int, reluDropout: Float): FeedForwardNetwork[T]

    Permalink
    Definition Classes
    PythonBigDL
  90. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

    Permalink
    Definition Classes
    PythonBigDL
  91. def createFixExpand(eh: Int, ew: Int): FixExpand

    Permalink
    Definition Classes
    PythonBigDL
  92. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Permalink
    Definition Classes
    PythonBigDL
  93. def createFlattenTable(): FlattenTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  94. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

    Permalink
    Definition Classes
    PythonBigDL
  95. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Permalink
    Definition Classes
    PythonBigDL
  96. def createGaussianCriterion(): GaussianCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  97. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Permalink
    Definition Classes
    PythonBigDL
  98. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Permalink
    Definition Classes
    PythonBigDL
  99. def createGaussianSampler(): GaussianSampler[T]

    Permalink
    Definition Classes
    PythonBigDL
  100. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Permalink
    Definition Classes
    PythonBigDL
  101. def createHFlip(): HFlip

    Permalink
    Definition Classes
    PythonBigDL
  102. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Permalink
    Definition Classes
    PythonBigDL
  103. def createHardSigmoid: HardSigmoid[T]

    Permalink
    Definition Classes
    PythonBigDL
  104. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

    Permalink
    Definition Classes
    PythonBigDL
  105. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  106. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  107. def createHitRatio(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  108. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Permalink
    Definition Classes
    PythonBigDL
  109. def createIdentity(): Identity[T]

    Permalink
    Definition Classes
    PythonBigDL
  110. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

    Permalink
    Definition Classes
    PythonBigDL
  111. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Permalink
    Definition Classes
    PythonBigDL
  112. def createIndex(dimension: Int): Index[T]

    Permalink
    Definition Classes
    PythonBigDL
  113. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Permalink
    Definition Classes
    PythonBigDL
  114. def createInput(): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDL
  115. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  116. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  117. def createKerasActivation(activation: String, inputShape: List[Int] = null): Activation[T]

    Permalink
  118. def createKerasAtrousConvolution1D(nbFilter: Int, filterLength: Int, init: String = "glorot_uniform", activation: String = null, subsampleLength: Int = 1, atrousRate: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, inputShape: List[Int] = null): AtrousConvolution1D[T]

    Permalink
  119. def createKerasAtrousConvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String = "glorot_uniform", activation: String = null, subsample: List[Int], atrousRate: List[Int], dimOrdering: String = "th", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, inputShape: List[Int] = null): AtrousConvolution2D[T]

    Permalink
  120. def createKerasAveragePooling1D(poolLength: Int = 2, stride: Int = 1, borderMode: String = "valid", inputShape: List[Int] = null): AveragePooling1D[T]

    Permalink
  121. def createKerasAveragePooling2D(poolSize: List[Int], strides: List[Int], borderMode: String = "valid", dimOrdering: String = "th", inputShape: List[Int] = null): AveragePooling2D[T]

    Permalink
  122. def createKerasAveragePooling3D(poolSize: List[Int], strides: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): AveragePooling3D[T]

    Permalink
  123. def createKerasBatchNormalization(epsilon: Double = 0.001, momentum: Double = 0.99, betaInit: String = "zero", gammaInit: String = "one", dimOrdering: String = "th", inputShape: List[Int] = null): BatchNormalization[T]

    Permalink
  124. def createKerasBidirectional(layer: Recurrent[T], mergeMode: String = "concat", inputShape: List[Int] = null): Bidirectional[T]

    Permalink
  125. def createKerasConvLSTM2D(nbFilter: Int, nbKernel: Int, activation: String = "tanh", innerActivation: String = "hard_sigmoid", dimOrdering: String = "th", subsample: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, returnSequences: Boolean = false, goBackwards: Boolean = false, inputShape: List[Int] = null): ConvLSTM2D[T]

    Permalink
  126. def createKerasConvolution1D(nbFilter: Int, filterLength: Int, init: String = "glorot_uniform", activation: String = null, borderMode: String = "valid", subsampleLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): Convolution1D[T]

    Permalink
  127. def createKerasConvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String = "glorot_uniform", activation: String = null, borderMode: String = "valid", subsample: List[Int], dimOrdering: String = "th", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): Convolution2D[T]

    Permalink
  128. def createKerasConvolution3D(nbFilter: Int, kernelDim1: Int, kernelDim2: Int, kernelDim3: Int, init: String = "glorot_uniform", activation: String = null, borderMode: String = "valid", subsample: List[Int], dimOrdering: String = "th", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): Convolution3D[T]

    Permalink
  129. def createKerasCropping1D(cropping: List[Int], inputShape: List[Int] = null): Cropping1D[T]

    Permalink
  130. def createKerasCropping2D(heightCrop: List[Int], widthCrop: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): Cropping2D[T]

    Permalink
  131. def createKerasCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): Cropping3D[T]

    Permalink
  132. def createKerasDeconvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String = "glorot_uniform", activation: String = null, subsample: List[Int], dimOrdering: String = "th", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): Deconvolution2D[T]

    Permalink
  133. def createKerasDense(outputDim: Int, init: String = "glorot_uniform", activation: String = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): Dense[T]

    Permalink
  134. def createKerasDropout(p: Double, inputShape: List[Int] = null): Dropout[T]

    Permalink
  135. def createKerasELU(alpha: Double = 1.0, inputShape: List[Int] = null): ELU[T]

    Permalink
  136. def createKerasEmbedding(inputDim: Int, outputDim: Int, init: String = "uniform", wRegularizer: Regularizer[T] = null, inputShape: List[Int] = null): Embedding[T]

    Permalink
  137. def createKerasFlatten(inputShape: List[Int] = null): Flatten[T]

    Permalink
  138. def createKerasGRU(outputDim: Int, activation: String = "tanh", innerActivation: String = "hard_sigmoid", returnSequences: Boolean = false, goBackwards: Boolean = false, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, inputShape: List[Int] = null): GRU[T]

    Permalink
  139. def createKerasGaussianDropout(p: Double, inputShape: List[Int] = null): GaussianDropout[T]

    Permalink
  140. def createKerasGaussianNoise(sigma: Double, inputShape: List[Int] = null): GaussianNoise[T]

    Permalink
  141. def createKerasGlobalAveragePooling1D(inputShape: List[Int] = null): GlobalAveragePooling1D[T]

    Permalink
  142. def createKerasGlobalAveragePooling2D(dimOrdering: String = "th", inputShape: List[Int] = null): GlobalAveragePooling2D[T]

    Permalink
  143. def createKerasGlobalAveragePooling3D(dimOrdering: String = "th", inputShape: List[Int] = null): GlobalAveragePooling3D[T]

    Permalink
  144. def createKerasGlobalMaxPooling1D(inputShape: List[Int] = null): GlobalMaxPooling1D[T]

    Permalink
  145. def createKerasGlobalMaxPooling2D(dimOrdering: String = "th", inputShape: List[Int] = null): GlobalMaxPooling2D[T]

    Permalink
  146. def createKerasGlobalMaxPooling3D(dimOrdering: String = "th", inputShape: List[Int] = null): GlobalMaxPooling3D[T]

    Permalink
  147. def createKerasHighway(activation: String = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): Highway[T]

    Permalink
  148. def createKerasInput(name: String = null, inputShape: List[Int] = null): ModuleNode[T]

    Permalink
  149. def createKerasInputLayer(inputShape: List[Int] = null): KerasLayer[Activity, Activity, T]

    Permalink
  150. def createKerasLSTM(outputDim: Int, activation: String = "tanh", innerActivation: String = "hard_sigmoid", returnSequences: Boolean = false, goBackwards: Boolean = false, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, inputShape: List[Int] = null): LSTM[T]

    Permalink
  151. def createKerasLeakyReLU(alpha: Double = 0.01, inputShape: List[Int] = null): LeakyReLU[T]

    Permalink
  152. def createKerasLocallyConnected1D(nbFilter: Int, filterLength: Int, activation: String = null, subsampleLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): LocallyConnected1D[T]

    Permalink
  153. def createKerasLocallyConnected2D(nbFilter: Int, nbRow: Int, nbCol: Int, activation: String = null, borderMode: String = "valid", subsample: List[Int], dimOrdering: String = "th", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): LocallyConnected2D[T]

    Permalink
  154. def createKerasMasking(maskValue: Double = 0.0, inputShape: List[Int] = null): Masking[T]

    Permalink
  155. def createKerasMaxPooling1D(poolLength: Int = 2, stride: Int = 1, borderMode: String = "valid", inputShape: List[Int] = null): MaxPooling1D[T]

    Permalink
  156. def createKerasMaxPooling2D(poolSize: List[Int], strides: List[Int], borderMode: String = "valid", dimOrdering: String = "th", inputShape: List[Int] = null): MaxPooling2D[T]

    Permalink
  157. def createKerasMaxPooling3D(poolSize: List[Int], strides: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): MaxPooling3D[T]

    Permalink
  158. def createKerasMaxoutDense(outputDim: Int, nbFeature: Int = 4, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): MaxoutDense[T]

    Permalink
  159. def createKerasMerge(layers: List[AbstractModule[Activity, Activity, T]] = null, mode: String = "sum", concatAxis: Int = 1, inputShape: List[List[Int]]): Merge[T]

    Permalink
  160. def createKerasModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Model[T]

    Permalink
  161. def createKerasPermute(dims: List[Int], inputShape: List[Int] = null): Permute[T]

    Permalink
  162. def createKerasRepeatVector(n: Int, inputShape: List[Int] = null): RepeatVector[T]

    Permalink
  163. def createKerasReshape(targetShape: List[Int], inputShape: List[Int] = null): Reshape[T]

    Permalink
  164. def createKerasSReLU(tLeftInit: String = "zero", aLeftInit: String = "glorot_uniform", tRightInit: String = "glorot_uniform", aRightInit: String = "one", sharedAxes: List[Int] = null, inputShape: List[Int] = null): SReLU[T]

    Permalink
  165. def createKerasSeparableConvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String = "glorot_uniform", activation: String = null, borderMode: String = "valid", subsample: List[Int], depthMultiplier: Int = 1, dimOrdering: String = "th", depthwiseRegularizer: Regularizer[T] = null, pointwiseRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, bias: Boolean = true, inputShape: List[Int] = null): SeparableConvolution2D[T]

    Permalink
  166. def createKerasSequential(): Sequential[T]

    Permalink
  167. def createKerasSimpleRNN(outputDim: Int, activation: String = "tanh", returnSequences: Boolean = false, goBackwards: Boolean = false, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, inputShape: List[Int] = null): SimpleRNN[T]

    Permalink
  168. def createKerasSpatialDropout1D(p: Double = 0.5, inputShape: List[Int] = null): SpatialDropout1D[T]

    Permalink
  169. def createKerasSpatialDropout2D(p: Double = 0.5, dimOrdering: String = "th", inputShape: List[Int] = null): SpatialDropout2D[T]

    Permalink
  170. def createKerasSpatialDropout3D(p: Double = 0.5, dimOrdering: String = "th", inputShape: List[Int] = null): SpatialDropout3D[T]

    Permalink
  171. def createKerasThresholdedReLU(theta: Double = 1.0, inputShape: List[Int] = null): ThresholdedReLU[T]

    Permalink
  172. def createKerasTimeDistributed(layer: KerasLayer[Tensor[T], Tensor[T], T], inputShape: List[Int] = null): TimeDistributed[T]

    Permalink
  173. def createKerasUpSampling1D(length: Int = 2, inputShape: List[Int] = null): UpSampling1D[T]

    Permalink
  174. def createKerasUpSampling2D(size: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): UpSampling2D[T]

    Permalink
  175. def createKerasUpSampling3D(size: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): UpSampling3D[T]

    Permalink
  176. def createKerasZeroPadding1D(padding: List[Int], inputShape: List[Int] = null): ZeroPadding1D[T]

    Permalink
  177. def createKerasZeroPadding2D(padding: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): ZeroPadding2D[T]

    Permalink
  178. def createKerasZeroPadding3D(padding: List[Int], dimOrdering: String = "th", inputShape: List[Int] = null): ZeroPadding3D[T]

    Permalink
  179. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  180. def createL1Cost(): L1Cost[T]

    Permalink
    Definition Classes
    PythonBigDL
  181. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  182. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Permalink
    Definition Classes
    PythonBigDL
  183. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Permalink
    Definition Classes
    PythonBigDL
  184. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Permalink
    Definition Classes
    PythonBigDL
  185. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Permalink
    Definition Classes
    PythonBigDL
  186. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Permalink
    Definition Classes
    PythonBigDL
  187. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Permalink
    Definition Classes
    PythonBigDL
  188. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Permalink
    Definition Classes
    PythonBigDL
  189. def createLayerNormalization(hiddenSize: Int): LayerNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  190. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  191. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Permalink
    Definition Classes
    PythonBigDL
  192. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  193. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  194. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

    Permalink
    Definition Classes
    PythonBigDL
  195. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  196. def createLog(): Log[T]

    Permalink
    Definition Classes
    PythonBigDL
  197. def createLogSigmoid(): LogSigmoid[T]

    Permalink
    Definition Classes
    PythonBigDL
  198. def createLogSoftMax(): LogSoftMax[T]

    Permalink
    Definition Classes
    PythonBigDL
  199. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  200. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

    Permalink
    Definition Classes
    PythonBigDL
  201. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  202. def createMAE(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  203. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Permalink
    Definition Classes
    PythonBigDL
  204. def createMSECriterion: MSECriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  205. def createMV(trans: Boolean = false): MV[T]

    Permalink
    Definition Classes
    PythonBigDL
  206. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  207. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  208. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  209. def createMaskedSelect(): MaskedSelect[T]

    Permalink
    Definition Classes
    PythonBigDL
  210. def createMasking(maskValue: Double): Masking[T]

    Permalink
    Definition Classes
    PythonBigDL
  211. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

    Permalink
    Definition Classes
    PythonBigDL
  212. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

    Permalink
    Definition Classes
    PythonBigDL
  213. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Permalink
    Definition Classes
    PythonBigDL
  214. def createMaxEpoch(max: Int): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  215. def createMaxIteration(max: Int): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  216. def createMaxScore(max: Float): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  217. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

    Permalink
    Definition Classes
    PythonBigDL
  218. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

    Permalink
    Definition Classes
    PythonBigDL
  219. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  220. def createMeanAveragePrecision(k: Int, classes: Int): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  221. def createMeanAveragePrecisionObjectDetection(classes: Int, iou: Float, useVoc2007: Boolean, skipClass: Int): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  222. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  223. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Permalink
    Definition Classes
    PythonBigDL
  224. def createMinLoss(min: Float): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  225. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  226. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  227. def createModelPreprocessor(preprocessor: AbstractModule[Activity, Activity, T], trainable: AbstractModule[Activity, Activity, T]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  228. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

    Permalink
    Definition Classes
    PythonBigDL
  229. def createMul(): Mul[T]

    Permalink
    Definition Classes
    PythonBigDL
  230. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Permalink
    Definition Classes
    PythonBigDL
  231. def createMultiCriterion(): MultiCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  232. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  233. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  234. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  235. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Permalink
    Definition Classes
    PythonBigDL
  236. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Permalink
    Definition Classes
    PythonBigDL
  237. def createNDCG(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  238. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Permalink
    Definition Classes
    PythonBigDL
  239. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  240. def createNegative(inplace: Boolean): Negative[T]

    Permalink
    Definition Classes
    PythonBigDL
  241. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

    Permalink
    Definition Classes
    PythonBigDL
  242. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDL
  243. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Permalink
    Definition Classes
    PythonBigDL
  244. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

    Permalink
    Definition Classes
    PythonBigDL
  245. def createOnes(): Ones.type

    Permalink
    Definition Classes
    PythonBigDL
  246. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  247. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  248. def createPack(dimension: Int): Pack[T]

    Permalink
    Definition Classes
    PythonBigDL
  249. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Permalink
    Definition Classes
    PythonBigDL
  250. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Permalink
    Definition Classes
    PythonBigDL
  251. def createParallelAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8, parallelNum: Int = Engine.coreNumber()): ParallelAdam[T]

    Permalink
    Definition Classes
    PythonBigDL
  252. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  253. def createParallelTable(): ParallelTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  254. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  255. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

    Permalink
    Definition Classes
    PythonBigDL
  256. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Permalink
    Definition Classes
    PythonBigDL
  257. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Permalink
    Definition Classes
    PythonBigDL
  258. def createPoissonCriterion: PoissonCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  259. def createPoly(power: Double, maxIteration: Int): Poly

    Permalink
    Definition Classes
    PythonBigDL
  260. def createPooler(resolution: Int, scales: List[Double], sampling_ratio: Int): Pooler[T]

    Permalink
    Definition Classes
    PythonBigDL
  261. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

    Permalink
    Definition Classes
    PythonBigDL
  262. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

    Permalink
    Definition Classes
    PythonBigDL
  263. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

    Permalink
    Definition Classes
    PythonBigDL
  264. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Permalink
    Definition Classes
    PythonBigDL
  265. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  266. def createRandomAlterAspect(min_area_ratio: Float, max_area_ratio: Int, min_aspect_ratio_change: Float, interp_mode: String, cropLength: Int): RandomAlterAspect

    Permalink
    Definition Classes
    PythonBigDL
  267. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

    Permalink
    Definition Classes
    PythonBigDL
  268. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Permalink
    Definition Classes
    PythonBigDL
  269. def createRandomCropper(cropWidth: Int, cropHeight: Int, mirror: Boolean, cropperMethod: String, channels: Int): RandomCropper

    Permalink
    Definition Classes
    PythonBigDL
  270. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Permalink
    Definition Classes
    PythonBigDL
  271. def createRandomResize(minSize: Int, maxSize: Int): RandomResize

    Permalink
    Definition Classes
    PythonBigDL
  272. def createRandomSampler(): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  273. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Permalink
    Definition Classes
    PythonBigDL
  274. def createRandomUniform(): InitializationMethod

    Permalink
    Definition Classes
    PythonBigDL
  275. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Permalink
    Definition Classes
    PythonBigDL
  276. def createReLU(ip: Boolean = false): ReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  277. def createReLU6(inplace: Boolean = false): ReLU6[T]

    Permalink
    Definition Classes
    PythonBigDL
  278. def createRecurrent(): Recurrent[T]

    Permalink
    Definition Classes
    PythonBigDL
  279. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Permalink
    Definition Classes
    PythonBigDL
  280. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Permalink
    Definition Classes
    PythonBigDL
  281. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Permalink
    Definition Classes
    PythonBigDL
  282. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

    Permalink
    Definition Classes
    PythonBigDL
  283. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

    Permalink
    Definition Classes
    PythonBigDL
  284. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Permalink
    Definition Classes
    PythonBigDL
  285. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Permalink
    Definition Classes
    PythonBigDL
  286. def createRoiAlign(spatial_scale: Double, sampling_ratio: Int, pooled_h: Int, pooled_w: Int): RoiAlign[T]

    Permalink
    Definition Classes
    PythonBigDL
  287. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

    Permalink
    Definition Classes
    PythonBigDL
  288. def createRoiNormalize(): RoiNormalize

    Permalink
    Definition Classes
    PythonBigDL
  289. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  290. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Permalink
    Definition Classes
    PythonBigDL
  291. def createRoiResize(normalized: Boolean): RoiResize

    Permalink
    Definition Classes
    PythonBigDL
  292. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Permalink
    Definition Classes
    PythonBigDL
  293. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  294. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Permalink
    Definition Classes
    PythonBigDL
  295. def createScale(size: List[Int]): Scale[T]

    Permalink
    Definition Classes
    PythonBigDL
  296. def createSelect(dimension: Int, index: Int): Select[T]

    Permalink
    Definition Classes
    PythonBigDL
  297. def createSelectTable(dimension: Int): SelectTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  298. def createSequenceBeamSearch(vocabSize: Int, beamSize: Int, alpha: Float, decodeLength: Int, eosId: Float, paddingValue: Float, numHiddenLayers: Int, hiddenSize: Int): SequenceBeamSearch[T]

    Permalink
    Definition Classes
    PythonBigDL
  299. def createSequential(): Container[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  300. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

    Permalink
    Definition Classes
    PythonBigDL
  301. def createSeveralIteration(interval: Int): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  302. def createSigmoid(): Sigmoid[T]

    Permalink
    Definition Classes
    PythonBigDL
  303. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  304. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Permalink
    Definition Classes
    PythonBigDL
  305. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  306. def createSoftMax(pos: Int = 1): SoftMax[T]

    Permalink
    Definition Classes
    PythonBigDL
  307. def createSoftMin(): SoftMin[T]

    Permalink
    Definition Classes
    PythonBigDL
  308. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

    Permalink
    Definition Classes
    PythonBigDL
  309. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Permalink
    Definition Classes
    PythonBigDL
  310. def createSoftSign(): SoftSign[T]

    Permalink
    Definition Classes
    PythonBigDL
  311. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  312. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  313. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Permalink
    Definition Classes
    PythonBigDL
  314. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  315. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  316. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  317. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  318. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Permalink
    Definition Classes
    PythonBigDL
  319. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

    Permalink
    Definition Classes
    PythonBigDL
  320. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  321. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  322. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

    Permalink
    Definition Classes
    PythonBigDL
  323. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  324. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  325. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  326. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  327. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  328. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  329. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  330. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Permalink
    Definition Classes
    PythonBigDL
  331. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Permalink
    Definition Classes
    PythonBigDL
  332. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  333. def createSqrt(): Sqrt[T]

    Permalink
    Definition Classes
    PythonBigDL
  334. def createSquare(): Square[T]

    Permalink
    Definition Classes
    PythonBigDL
  335. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Permalink
    Definition Classes
    PythonBigDL
  336. def createStep(stepSize: Int, gamma: Double): Step

    Permalink
    Definition Classes
    PythonBigDL
  337. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

    Permalink
    Definition Classes
    PythonBigDL
  338. def createTableOperation(operationLayer: AbstractModule[Table, Tensor[T], T]): TableOperation[T]

    Permalink
    Definition Classes
    PythonBigDL
  339. def createTanh(): Tanh[T]

    Permalink
    Definition Classes
    PythonBigDL
  340. def createTanhShrink(): TanhShrink[T]

    Permalink
    Definition Classes
    PythonBigDL
  341. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  342. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  343. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Permalink
    Definition Classes
    PythonBigDL
  344. def createTile(dim: Int, copies: Int): Tile[T]

    Permalink
    Definition Classes
    PythonBigDL
  345. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Permalink
    Definition Classes
    PythonBigDL
  346. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false, dimension: Int = 2): TimeDistributedCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  347. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  348. def createTop1Accuracy(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  349. def createTop5Accuracy(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  350. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Permalink
    Definition Classes
    PythonBigDL
  351. def createTransformer(vocabSize: Int, hiddenSize: Int, numHeads: Int, filterSize: Int, numHiddenlayers: Int, postprocessDropout: Double, attentionDropout: Double, reluDropout: Double): Transformer[T]

    Permalink
    Definition Classes
    PythonBigDL
  352. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  353. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Permalink
    Definition Classes
    PythonBigDL
  354. def createTreeNNAccuracy(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  355. def createTriggerAnd(first: Trigger, others: List[Trigger]): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  356. def createTriggerOr(first: Trigger, others: List[Trigger]): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  357. def createUnsqueeze(pos: List[Int], numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Permalink
    Definition Classes
    PythonBigDL
  358. def createUpSampling1D(length: Int): UpSampling1D[T]

    Permalink
    Definition Classes
    PythonBigDL
  359. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  360. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  361. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Permalink
    Definition Classes
    PythonBigDL
  362. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Permalink
    Definition Classes
    PythonBigDL
  363. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  364. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  365. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  366. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  367. def createWarmup(delta: Double): Warmup

    Permalink
    Definition Classes
    PythonBigDL
  368. def createXavier(): Xavier.type

    Permalink
    Definition Classes
    PythonBigDL
  369. def createZeros(): Zeros.type

    Permalink
    Definition Classes
    PythonBigDL
  370. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean, target: List[_ <: AnyRef], targetIsTable: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  371. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean, target: List[_ <: AnyRef], targetIsTable: Boolean): T

    Permalink
    Definition Classes
    PythonBigDL
  372. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  373. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

    Permalink
    Definition Classes
    PythonBigDL
  374. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  375. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  376. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Permalink
    Definition Classes
    PythonBigDL
  377. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

    Permalink
    Definition Classes
    PythonBigDL
  378. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

    Permalink
    Definition Classes
    PythonBigDL
  379. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  380. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  381. def evaluate(module: KerasModel[T], x: JavaRDD[Sample], batchSize: Int = 32): List[EvaluatedResult]

    Permalink
  382. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  383. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

    Permalink
    Definition Classes
    PythonBigDL
  384. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  385. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDL
  386. def fit(module: KerasModel[T], xTrain: List[JTensor], yTrain: JTensor, batchSize: Int, epochs: Int, xVal: List[JTensor], yVal: JTensor, localCores: Int): Unit

    Permalink
  387. def fit(module: KerasModel[T], x: DataSet[ImageFeature], batchSize: Int, epochs: Int, validationData: DataSet[ImageFeature]): Unit

    Permalink
  388. def fit(module: KerasModel[T], x: JavaRDD[Sample], batchSize: Int = 32, epochs: Int = 10, validationData: JavaRDD[Sample] = null): Unit

    Permalink
  389. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  390. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  391. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Permalink
    Definition Classes
    PythonBigDL
  392. def getEngineType(): String

    Permalink
    Definition Classes
    PythonBigDL
  393. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Permalink
    Definition Classes
    PythonBigDL
  394. def getHiddenState(rec: Recurrent[T]): JActivity

    Permalink
    Definition Classes
    PythonBigDL
  395. def getInputShape(module: Container[Activity, Activity, T]): List[List[Int]]

    Permalink
  396. def getNodeAndCoreNumber(): Array[Int]

    Permalink
    Definition Classes
    PythonBigDL
  397. def getOptimizerVersion(): String

    Permalink
    Definition Classes
    PythonBigDL
  398. def getOutputShape(module: Container[Activity, Activity, T]): List[List[Int]]

    Permalink
  399. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

    Permalink
    Definition Classes
    PythonBigDL
  400. def getRunningMean(module: BatchNormalization[T]): JTensor

    Permalink
  401. def getRunningMean(module: BatchNormalization[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  402. def getRunningStd(module: BatchNormalization[T]): JTensor

    Permalink
  403. def getRunningStd(module: BatchNormalization[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  404. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  405. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  406. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Permalink
    Definition Classes
    PythonBigDL
  407. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  408. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  409. def initEngine(): Unit

    Permalink
    Definition Classes
    PythonBigDL
  410. def isDistributed(imageFrame: ImageFrame): Boolean

    Permalink
    Definition Classes
    PythonBigDL
  411. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  412. def isLocal(imageFrame: ImageFrame): Boolean

    Permalink
    Definition Classes
    PythonBigDL
  413. def isWithWeights(module: Module[T]): Boolean

    Permalink
    Definition Classes
    PythonBigDL
  414. def jTensorsToActivity(input: List[_ <: AnyRef], isTable: Boolean): Activity

    Permalink
    Definition Classes
    PythonBigDL
  415. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  416. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  417. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  418. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  419. def loadOptimMethod(path: String): OptimMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  420. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  421. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  422. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  423. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  424. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Permalink
    Definition Classes
    PythonBigDL
  425. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

    Permalink
    Definition Classes
    PythonBigDL
  426. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

    Permalink
    Definition Classes
    PythonBigDL
  427. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean, gradOutput: List[_ <: AnyRef], gradOutputIsTable: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  428. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
    Definition Classes
    PythonBigDL
  429. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
    Definition Classes
    PythonBigDL
  430. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  431. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Permalink
    Definition Classes
    PythonBigDL
  432. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Permalink
    Definition Classes
    PythonBigDL
  433. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  434. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  435. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  436. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  437. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  438. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  439. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  440. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Permalink
    Definition Classes
    PythonBigDL
  441. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Permalink
    Definition Classes
    PythonBigDL
  442. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  443. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  444. def redirectSparkLogs(logPath: String): Unit

    Permalink
    Definition Classes
    PythonBigDL
  445. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  446. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Permalink
    Definition Classes
    PythonBigDL
  447. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  448. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Permalink
    Definition Classes
    PythonBigDL
  449. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Permalink
    Definition Classes
    PythonBigDL
  450. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Permalink

    Save tensor dictionary to a Java hashmap object file

    Save tensor dictionary to a Java hashmap object file

    Definition Classes
    PythonBigDL
  451. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  452. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  453. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Permalink
    Definition Classes
    PythonBigDL
  454. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  455. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

    Permalink
    Definition Classes
    PythonBigDL
  456. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Permalink
    Definition Classes
    PythonBigDL
  457. def setInputFormats(graph: StaticGraph[T], inputFormat: List[Int]): StaticGraph[T]

    Permalink
    Definition Classes
    PythonBigDL
  458. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Permalink
    Definition Classes
    PythonBigDL
  459. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

    Permalink
    Definition Classes
    PythonBigDL
  460. def setModelSeed(seed: Long): Unit

    Permalink
    Definition Classes
    PythonBigDL
  461. def setOptimizerVersion(version: String): Unit

    Permalink
    Definition Classes
    PythonBigDL
  462. def setOutputFormats(graph: StaticGraph[T], outputFormat: List[Int]): StaticGraph[T]

    Permalink
    Definition Classes
    PythonBigDL
  463. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Permalink
  464. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Permalink
    Definition Classes
    PythonBigDL
  465. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Permalink
  466. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Permalink
    Definition Classes
    PythonBigDL
  467. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  468. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Permalink
    Definition Classes
    PythonBigDL
  469. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Permalink
    Definition Classes
    PythonBigDL
  470. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Permalink
    Definition Classes
    PythonBigDL
  471. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  472. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  473. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  474. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  475. def shapeToJList(shape: Shape): List[List[Int]]

    Permalink
  476. def showBigDlInfoLogs(): Unit

    Permalink
    Definition Classes
    PythonBigDL
  477. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Permalink
    Definition Classes
    PythonBigDL
  478. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Permalink
    Definition Classes
    PythonBigDL
  479. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  480. def testSample(sample: Sample): Sample

    Permalink
    Definition Classes
    PythonBigDL
  481. def testTensor(jTensor: JTensor): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  482. def toGraph(sequential: Sequential[T]): StaticGraph[T]

    Permalink
    Definition Classes
    PythonBigDL
  483. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

    Permalink
    Definition Classes
    PythonBigDL
  484. def toJSample(record: Sample): dataset.Sample[T]

    Permalink
    Definition Classes
    PythonBigDL
  485. def toJTensor(tensor: Tensor[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  486. def toPySample(sample: dataset.Sample[T]): Sample

    Permalink
    Definition Classes
    PythonBigDL
  487. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

    Permalink
    Definition Classes
    PythonBigDL
  488. def toScalaArray(list: List[Int]): Array[Int]

    Permalink
  489. def toScalaMultiShape(inputShape: List[List[Int]]): Shape

    Permalink
  490. def toScalaShape(inputShape: List[Int]): Shape

    Permalink
  491. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  492. def toTensor(jTensor: JTensor): Tensor[T]

    Permalink
    Definition Classes
    PythonBigDL
  493. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  494. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Permalink
    Definition Classes
    PythonBigDL
  495. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  496. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  497. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  498. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Permalink
    Definition Classes
    PythonBigDL
  499. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  500. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  501. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  502. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

    Permalink
    Definition Classes
    PythonBigDL

Inherited from PythonBigDL[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped