com
.
intel
.
analytics
.
bigdl
.
python
.
api
PythonBigDLKeras
Related Docs:
object PythonBigDLKeras
|
package api
class
PythonBigDLKeras
[
T
]
extends
PythonBigDL
[
T
]
Linear Supertypes
PythonBigDL
[
T
],
Serializable
,
Serializable
,
AnyRef
,
Any
Ordering
Alphabetic
By Inheritance
Inherited
PythonBigDLKeras
PythonBigDL
Serializable
Serializable
AnyRef
Any
Hide All
Show All
Visibility
Public
All
Instance Constructors
new
PythonBigDLKeras
()
(
implicit
arg0:
ClassTag
[
T
]
,
ev:
TensorNumeric
[
T
]
)
Value Members
final
def
!=
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
final
def
##
()
:
Int
Definition Classes
AnyRef → Any
final
def
==
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
def
activityToJTensors
(
outputActivity:
Activity
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
addScheduler
(
seq:
SequentialSchedule
,
scheduler:
LearningRateSchedule
,
maxIteration:
Int
)
:
SequentialSchedule
Definition Classes
PythonBigDL
final
def
asInstanceOf
[
T0
]
:
T0
Definition Classes
Any
def
batching
(
dataset:
DataSet
[
dataset.Sample
[
T
]]
,
batchSize:
Int
)
:
DataSet
[
MiniBatch
[
T
]]
Definition Classes
PythonBigDL
def
clone
()
:
AnyRef
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
...
)
def
compile
(
module:
KerasModel
[
T
]
,
optimizer:
OptimMethod
[
T
]
,
loss:
Criterion
[
T
]
,
metrics:
List
[
ValidationMethod
[
T
]] =
null
)
:
Unit
def
createAbs
()
:
Abs
[
T
]
Definition Classes
PythonBigDL
def
createAbsCriterion
(
sizeAverage:
Boolean
=
true
)
:
AbsCriterion
[
T
]
Definition Classes
PythonBigDL
def
createActivityRegularization
(
l1:
Double
,
l2:
Double
)
:
ActivityRegularization
[
T
]
Definition Classes
PythonBigDL
def
createAdadelta
(
decayRate:
Double
=
0.9
,
Epsilon:
Double
=
1e-10
)
:
Adadelta
[
T
]
Definition Classes
PythonBigDL
def
createAdagrad
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
weightDecay:
Double
=
0.0
)
:
Adagrad
[
T
]
Definition Classes
PythonBigDL
def
createAdam
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
beta1:
Double
=
0.9
,
beta2:
Double
=
0.999
,
Epsilon:
Double
=
1e-8
)
:
Adam
[
T
]
Definition Classes
PythonBigDL
def
createAdamax
(
learningRate:
Double
=
0.002
,
beta1:
Double
=
0.9
,
beta2:
Double
=
0.999
,
Epsilon:
Double
=
1e-38
)
:
Adamax
[
T
]
Definition Classes
PythonBigDL
def
createAdd
(
inputSize:
Int
)
:
Add
[
T
]
Definition Classes
PythonBigDL
def
createAddConstant
(
constant_scalar:
Double
,
inplace:
Boolean
=
false
)
:
AddConstant
[
T
]
Definition Classes
PythonBigDL
def
createAspectScale
(
scale:
Int
,
scaleMultipleOf:
Int
,
maxSize:
Int
,
resizeMode:
Int
=
1
,
useScaleFactor:
Boolean
=
true
,
minScale:
Double
=
1
)
:
FeatureTransformer
Definition Classes
PythonBigDL
def
createAttention
(
hiddenSize:
Int
,
numHeads:
Int
,
attentionDropout:
Float
)
:
Attention
[
T
]
Definition Classes
PythonBigDL
def
createBCECriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
BCECriterion
[
T
]
Definition Classes
PythonBigDL
def
createBatchNormalization
(
nOutput:
Int
,
eps:
Double
=
1e-5
,
momentum:
Double
=
0.1
,
affine:
Boolean
=
true
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
BatchNormalization
[
T
]
Definition Classes
PythonBigDL
def
createBiRecurrent
(
merge:
AbstractModule
[
Table
,
Tensor
[
T
],
T
] =
null
)
:
BiRecurrent
[
T
]
Definition Classes
PythonBigDL
def
createBifurcateSplitTable
(
dimension:
Int
)
:
BifurcateSplitTable
[
T
]
Definition Classes
PythonBigDL
def
createBilinear
(
inputSize1:
Int
,
inputSize2:
Int
,
outputSize:
Int
,
biasRes:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
Bilinear
[
T
]
Definition Classes
PythonBigDL
def
createBilinearFiller
()
:
BilinearFiller
.type
Definition Classes
PythonBigDL
def
createBinaryThreshold
(
th:
Double
,
ip:
Boolean
)
:
BinaryThreshold
[
T
]
Definition Classes
PythonBigDL
def
createBinaryTreeLSTM
(
inputSize:
Int
,
hiddenSize:
Int
,
gateOutput:
Boolean
=
true
,
withGraph:
Boolean
=
true
)
:
BinaryTreeLSTM
[
T
]
Definition Classes
PythonBigDL
def
createBottle
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
nInputDim:
Int
=
2
,
nOutputDim1:
Int
=
Int.MaxValue
)
:
Bottle
[
T
]
Definition Classes
PythonBigDL
def
createBrightness
(
deltaLow:
Double
,
deltaHigh:
Double
)
:
Brightness
Definition Classes
PythonBigDL
def
createBytesToMat
(
byteKey:
String
)
:
BytesToMat
Definition Classes
PythonBigDL
def
createCAdd
(
size:
List
[
Int
]
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
CAdd
[
T
]
Definition Classes
PythonBigDL
def
createCAddTable
(
inplace:
Boolean
=
false
)
:
CAddTable
[
T
,
T
]
Definition Classes
PythonBigDL
def
createCAveTable
(
inplace:
Boolean
=
false
)
:
CAveTable
[
T
]
Definition Classes
PythonBigDL
def
createCDivTable
()
:
CDivTable
[
T
]
Definition Classes
PythonBigDL
def
createCMaxTable
()
:
CMaxTable
[
T
]
Definition Classes
PythonBigDL
def
createCMinTable
()
:
CMinTable
[
T
]
Definition Classes
PythonBigDL
def
createCMul
(
size:
List
[
Int
]
,
wRegularizer:
Regularizer
[
T
] =
null
)
:
CMul
[
T
]
Definition Classes
PythonBigDL
def
createCMulTable
()
:
CMulTable
[
T
]
Definition Classes
PythonBigDL
def
createCSubTable
()
:
CSubTable
[
T
]
Definition Classes
PythonBigDL
def
createCategoricalCrossEntropy
()
:
CategoricalCrossEntropy
[
T
]
Definition Classes
PythonBigDL
def
createCenterCrop
(
cropWidth:
Int
,
cropHeight:
Int
,
isClip:
Boolean
)
:
CenterCrop
Definition Classes
PythonBigDL
def
createChannelNormalize
(
meanR:
Double
,
meanG:
Double
,
meanB:
Double
,
stdR:
Double
=
1
,
stdG:
Double
=
1
,
stdB:
Double
=
1
)
:
FeatureTransformer
Definition Classes
PythonBigDL
def
createChannelOrder
()
:
ChannelOrder
Definition Classes
PythonBigDL
def
createChannelScaledNormalizer
(
meanR:
Int
,
meanG:
Int
,
meanB:
Int
,
scale:
Double
)
:
ChannelScaledNormalizer
Definition Classes
PythonBigDL
def
createClamp
(
min:
Int
,
max:
Int
)
:
Clamp
[
T
]
Definition Classes
PythonBigDL
def
createClassNLLCriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
,
logProbAsInput:
Boolean
=
true
)
:
ClassNLLCriterion
[
T
]
Definition Classes
PythonBigDL
def
createClassSimplexCriterion
(
nClasses:
Int
)
:
ClassSimplexCriterion
[
T
]
Definition Classes
PythonBigDL
def
createColorJitter
(
brightnessProb:
Double
=
0.5
,
brightnessDelta:
Double
=
32
,
contrastProb:
Double
=
0.5
,
contrastLower:
Double
=
0.5
,
contrastUpper:
Double
=
1.5
,
hueProb:
Double
=
0.5
,
hueDelta:
Double
=
18
,
saturationProb:
Double
=
0.5
,
saturationLower:
Double
=
0.5
,
saturationUpper:
Double
=
1.5
,
randomOrderProb:
Double
=
0
,
shuffle:
Boolean
=
false
)
:
ColorJitter
Definition Classes
PythonBigDL
def
createConcat
(
dimension:
Int
)
:
Concat
[
T
]
Definition Classes
PythonBigDL
def
createConcatTable
()
:
ConcatTable
[
T
]
Definition Classes
PythonBigDL
def
createConstInitMethod
(
value:
Double
)
:
ConstInitMethod
Definition Classes
PythonBigDL
def
createContiguous
()
:
Contiguous
[
T
]
Definition Classes
PythonBigDL
def
createContrast
(
deltaLow:
Double
,
deltaHigh:
Double
)
:
Contrast
Definition Classes
PythonBigDL
def
createConvLSTMPeephole
(
inputSize:
Int
,
outputSize:
Int
,
kernelI:
Int
,
kernelC:
Int
,
stride:
Int
=
1
,
padding:
Int
=
1
,
activation:
TensorModule
[
T
] =
null
,
innerActivation:
TensorModule
[
T
] =
null
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
cRegularizer:
Regularizer
[
T
] =
null
,
withPeephole:
Boolean
=
true
)
:
ConvLSTMPeephole
[
T
]
Definition Classes
PythonBigDL
def
createConvLSTMPeephole3D
(
inputSize:
Int
,
outputSize:
Int
,
kernelI:
Int
,
kernelC:
Int
,
stride:
Int
=
1
,
padding:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
cRegularizer:
Regularizer
[
T
] =
null
,
withPeephole:
Boolean
=
true
)
:
ConvLSTMPeephole3D
[
T
]
Definition Classes
PythonBigDL
def
createCosine
(
inputSize:
Int
,
outputSize:
Int
)
:
Cosine
[
T
]
Definition Classes
PythonBigDL
def
createCosineDistance
()
:
CosineDistance
[
T
]
Definition Classes
PythonBigDL
def
createCosineDistanceCriterion
(
sizeAverage:
Boolean
=
true
)
:
CosineDistanceCriterion
[
T
]
Definition Classes
PythonBigDL
def
createCosineEmbeddingCriterion
(
margin:
Double
=
0.0
,
sizeAverage:
Boolean
=
true
)
:
CosineEmbeddingCriterion
[
T
]
Definition Classes
PythonBigDL
def
createCosineProximityCriterion
()
:
CosineProximityCriterion
[
T
]
Definition Classes
PythonBigDL
def
createCropping2D
(
heightCrop:
List
[
Int
]
,
widthCrop:
List
[
Int
]
,
dataFormat:
String
=
"NCHW"
)
:
Cropping2D
[
T
]
Definition Classes
PythonBigDL
def
createCropping3D
(
dim1Crop:
List
[
Int
]
,
dim2Crop:
List
[
Int
]
,
dim3Crop:
List
[
Int
]
,
dataFormat:
String
=
Cropping3D.CHANNEL_FIRST
)
:
Cropping3D
[
T
]
Definition Classes
PythonBigDL
def
createCrossEntropyCriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
CrossEntropyCriterion
[
T
]
Definition Classes
PythonBigDL
def
createCrossProduct
(
numTensor:
Int
=
0
,
embeddingSize:
Int
=
0
)
:
CrossProduct
[
T
]
Definition Classes
PythonBigDL
def
createDatasetFromImageFrame
(
imageFrame:
ImageFrame
)
:
DataSet
[
ImageFeature
]
Definition Classes
PythonBigDL
def
createDefault
()
:
Default
Definition Classes
PythonBigDL
def
createDenseToSparse
()
:
DenseToSparse
[
T
]
Definition Classes
PythonBigDL
def
createDetectionCrop
(
roiKey:
String
,
normalized:
Boolean
)
:
DetectionCrop
Definition Classes
PythonBigDL
def
createDetectionOutputFrcnn
(
nmsThresh:
Float
=
0.3f
,
nClasses:
Int
,
bboxVote:
Boolean
,
maxPerImage:
Int
=
100
,
thresh:
Double
=
0.05
)
:
DetectionOutputFrcnn
Definition Classes
PythonBigDL
def
createDetectionOutputSSD
(
nClasses:
Int
,
shareLocation:
Boolean
,
bgLabel:
Int
,
nmsThresh:
Double
,
nmsTopk:
Int
,
keepTopK:
Int
,
confThresh:
Double
,
varianceEncodedInTarget:
Boolean
,
confPostProcess:
Boolean
)
:
DetectionOutputSSD
[
T
]
Definition Classes
PythonBigDL
def
createDiceCoefficientCriterion
(
sizeAverage:
Boolean
=
true
,
epsilon:
Float
=
1.0f
)
:
DiceCoefficientCriterion
[
T
]
Definition Classes
PythonBigDL
def
createDistKLDivCriterion
(
sizeAverage:
Boolean
=
true
)
:
DistKLDivCriterion
[
T
]
Definition Classes
PythonBigDL
def
createDistriOptimizer
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
trainingRdd:
JavaRDD
[
Sample
]
,
criterion:
Criterion
[
T
]
,
optimMethod:
Map
[
String
,
OptimMethod
[
T
]]
,
endTrigger:
Trigger
,
batchSize:
Int
)
:
Optimizer
[
T
,
MiniBatch
[
T
]]
Definition Classes
PythonBigDL
def
createDistriOptimizerFromDataSet
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
trainDataSet:
DataSet
[
ImageFeature
]
,
criterion:
Criterion
[
T
]
,
optimMethod:
Map
[
String
,
OptimMethod
[
T
]]
,
endTrigger:
Trigger
,
batchSize:
Int
)
:
Optimizer
[
T
,
MiniBatch
[
T
]]
Definition Classes
PythonBigDL
def
createDistributedImageFrame
(
imageRdd:
JavaRDD
[
JTensor
]
,
labelRdd:
JavaRDD
[
JTensor
]
)
:
DistributedImageFrame
Definition Classes
PythonBigDL
def
createDotProduct
()
:
DotProduct
[
T
]
Definition Classes
PythonBigDL
def
createDotProductCriterion
(
sizeAverage:
Boolean
=
false
)
:
DotProductCriterion
[
T
]
Definition Classes
PythonBigDL
def
createDropout
(
initP:
Double
=
0.5
,
inplace:
Boolean
=
false
,
scale:
Boolean
=
true
)
:
Dropout
[
T
]
Definition Classes
PythonBigDL
def
createELU
(
alpha:
Double
=
1.0
,
inplace:
Boolean
=
false
)
:
ELU
[
T
]
Definition Classes
PythonBigDL
def
createEcho
()
:
Echo
[
T
]
Definition Classes
PythonBigDL
def
createEuclidean
(
inputSize:
Int
,
outputSize:
Int
,
fastBackward:
Boolean
=
true
)
:
Euclidean
[
T
]
Definition Classes
PythonBigDL
def
createEveryEpoch
()
:
Trigger
Definition Classes
PythonBigDL
def
createExp
()
:
Exp
[
T
]
Definition Classes
PythonBigDL
def
createExpand
(
meansR:
Int
=
123
,
meansG:
Int
=
117
,
meansB:
Int
=
104
,
minExpandRatio:
Double
=
1.0
,
maxExpandRatio:
Double
=
4.0
)
:
Expand
Definition Classes
PythonBigDL
def
createExpandSize
(
targetSizes:
List
[
Int
]
)
:
ExpandSize
[
T
]
Definition Classes
PythonBigDL
def
createExponential
(
decayStep:
Int
,
decayRate:
Double
,
stairCase:
Boolean
=
false
)
:
Exponential
Definition Classes
PythonBigDL
def
createFPN
(
in_channels_list:
List
[
Int
]
,
out_channels:
Int
,
top_blocks:
Int
=
0
,
in_channels_of_p6p7:
Int
=
0
,
out_channels_of_p6p7:
Int
=
0
)
:
FPN
[
T
]
Definition Classes
PythonBigDL
def
createFeedForwardNetwork
(
hiddenSize:
Int
,
filterSize:
Int
,
reluDropout:
Float
)
:
FeedForwardNetwork
[
T
]
Definition Classes
PythonBigDL
def
createFiller
(
startX:
Double
,
startY:
Double
,
endX:
Double
,
endY:
Double
,
value:
Int
=
255
)
:
Filler
Definition Classes
PythonBigDL
def
createFixExpand
(
eh:
Int
,
ew:
Int
)
:
FixExpand
Definition Classes
PythonBigDL
def
createFixedCrop
(
wStart:
Double
,
hStart:
Double
,
wEnd:
Double
,
hEnd:
Double
,
normalized:
Boolean
,
isClip:
Boolean
)
:
FixedCrop
Definition Classes
PythonBigDL
def
createFlattenTable
()
:
FlattenTable
[
T
]
Definition Classes
PythonBigDL
def
createFtrl
(
learningRate:
Double
=
1e-3
,
learningRatePower:
Double
=
0.5
,
initialAccumulatorValue:
Double
=
0.1
,
l1RegularizationStrength:
Double
=
0.0
,
l2RegularizationStrength:
Double
=
0.0
,
l2ShrinkageRegularizationStrength:
Double
=
0.0
)
:
Ftrl
[
T
]
Definition Classes
PythonBigDL
def
createGRU
(
inputSize:
Int
,
outputSize:
Int
,
p:
Double
=
0
,
activation:
TensorModule
[
T
] =
null
,
innerActivation:
TensorModule
[
T
] =
null
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
GRU
[
T
]
Definition Classes
PythonBigDL
def
createGaussianCriterion
()
:
GaussianCriterion
[
T
]
Definition Classes
PythonBigDL
def
createGaussianDropout
(
rate:
Double
)
:
GaussianDropout
[
T
]
Definition Classes
PythonBigDL
def
createGaussianNoise
(
stddev:
Double
)
:
GaussianNoise
[
T
]
Definition Classes
PythonBigDL
def
createGaussianSampler
()
:
GaussianSampler
[
T
]
Definition Classes
PythonBigDL
def
createGradientReversal
(
lambda:
Double
=
1
)
:
GradientReversal
[
T
]
Definition Classes
PythonBigDL
def
createHFlip
()
:
HFlip
Definition Classes
PythonBigDL
def
createHardShrink
(
lambda:
Double
=
0.5
)
:
HardShrink
[
T
]
Definition Classes
PythonBigDL
def
createHardSigmoid
:
HardSigmoid
[
T
]
Definition Classes
PythonBigDL
def
createHardTanh
(
minValue:
Double
=
1
,
maxValue:
Double
=
1
,
inplace:
Boolean
=
false
)
:
HardTanh
[
T
]
Definition Classes
PythonBigDL
def
createHighway
(
size:
Int
,
withBias:
Boolean
,
activation:
TensorModule
[
T
] =
null
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
Graph
[
T
]
Definition Classes
PythonBigDL
def
createHingeEmbeddingCriterion
(
margin:
Double
=
1
,
sizeAverage:
Boolean
=
true
)
:
HingeEmbeddingCriterion
[
T
]
Definition Classes
PythonBigDL
def
createHitRatio
(
k:
Int
=
10
,
negNum:
Int
=
100
)
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createHue
(
deltaLow:
Double
,
deltaHigh:
Double
)
:
Hue
Definition Classes
PythonBigDL
def
createIdentity
()
:
Identity
[
T
]
Definition Classes
PythonBigDL
def
createImageFeature
(
data:
JTensor
=
null
,
label:
JTensor
=
null
,
uri:
String
=
null
)
:
ImageFeature
Definition Classes
PythonBigDL
def
createImageFrameToSample
(
inputKeys:
List
[
String
]
,
targetKeys:
List
[
String
]
,
sampleKey:
String
)
:
ImageFrameToSample
[
T
]
Definition Classes
PythonBigDL
def
createIndex
(
dimension:
Int
)
:
Index
[
T
]
Definition Classes
PythonBigDL
def
createInferReshape
(
size:
List
[
Int
]
,
batchMode:
Boolean
=
false
)
:
InferReshape
[
T
]
Definition Classes
PythonBigDL
def
createInput
()
:
ModuleNode
[
T
]
Definition Classes
PythonBigDL
def
createJoinTable
(
dimension:
Int
,
nInputDims:
Int
)
:
JoinTable
[
T
]
Definition Classes
PythonBigDL
def
createKLDCriterion
(
sizeAverage:
Boolean
)
:
KLDCriterion
[
T
]
Definition Classes
PythonBigDL
def
createKerasActivation
(
activation:
String
,
inputShape:
List
[
Int
] =
null
)
:
Activation
[
T
]
def
createKerasAtrousConvolution1D
(
nbFilter:
Int
,
filterLength:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
subsampleLength:
Int
=
1
,
atrousRate:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
AtrousConvolution1D
[
T
]
def
createKerasAtrousConvolution2D
(
nbFilter:
Int
,
nbRow:
Int
,
nbCol:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
subsample:
List
[
Int
]
,
atrousRate:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
AtrousConvolution2D
[
T
]
def
createKerasAveragePooling1D
(
poolLength:
Int
=
2
,
stride:
Int
=
1
,
borderMode:
String
=
"valid"
,
inputShape:
List
[
Int
] =
null
)
:
AveragePooling1D
[
T
]
def
createKerasAveragePooling2D
(
poolSize:
List
[
Int
]
,
strides:
List
[
Int
]
,
borderMode:
String
=
"valid"
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
AveragePooling2D
[
T
]
def
createKerasAveragePooling3D
(
poolSize:
List
[
Int
]
,
strides:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
AveragePooling3D
[
T
]
def
createKerasBatchNormalization
(
epsilon:
Double
=
0.001
,
momentum:
Double
=
0.99
,
betaInit:
String
=
"zero"
,
gammaInit:
String
=
"one"
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
BatchNormalization
[
T
]
def
createKerasBidirectional
(
layer:
Recurrent
[
T
]
,
mergeMode:
String
=
"concat"
,
inputShape:
List
[
Int
] =
null
)
:
Bidirectional
[
T
]
def
createKerasConvLSTM2D
(
nbFilter:
Int
,
nbKernel:
Int
,
activation:
String
=
"tanh"
,
innerActivation:
String
=
"hard_sigmoid"
,
dimOrdering:
String
=
"th"
,
subsample:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
returnSequences:
Boolean
=
false
,
goBackwards:
Boolean
=
false
,
inputShape:
List
[
Int
] =
null
)
:
ConvLSTM2D
[
T
]
def
createKerasConvolution1D
(
nbFilter:
Int
,
filterLength:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
borderMode:
String
=
"valid"
,
subsampleLength:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
Convolution1D
[
T
]
def
createKerasConvolution2D
(
nbFilter:
Int
,
nbRow:
Int
,
nbCol:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
borderMode:
String
=
"valid"
,
subsample:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
Convolution2D
[
T
]
def
createKerasConvolution3D
(
nbFilter:
Int
,
kernelDim1:
Int
,
kernelDim2:
Int
,
kernelDim3:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
borderMode:
String
=
"valid"
,
subsample:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
Convolution3D
[
T
]
def
createKerasCropping1D
(
cropping:
List
[
Int
]
,
inputShape:
List
[
Int
] =
null
)
:
Cropping1D
[
T
]
def
createKerasCropping2D
(
heightCrop:
List
[
Int
]
,
widthCrop:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
Cropping2D
[
T
]
def
createKerasCropping3D
(
dim1Crop:
List
[
Int
]
,
dim2Crop:
List
[
Int
]
,
dim3Crop:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
Cropping3D
[
T
]
def
createKerasDeconvolution2D
(
nbFilter:
Int
,
nbRow:
Int
,
nbCol:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
subsample:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
Deconvolution2D
[
T
]
def
createKerasDense
(
outputDim:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
Dense
[
T
]
def
createKerasDropout
(
p:
Double
,
inputShape:
List
[
Int
] =
null
)
:
Dropout
[
T
]
def
createKerasELU
(
alpha:
Double
=
1.0
,
inputShape:
List
[
Int
] =
null
)
:
ELU
[
T
]
def
createKerasEmbedding
(
inputDim:
Int
,
outputDim:
Int
,
init:
String
=
"uniform"
,
wRegularizer:
Regularizer
[
T
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
Embedding
[
T
]
def
createKerasFlatten
(
inputShape:
List
[
Int
] =
null
)
:
Flatten
[
T
]
def
createKerasGRU
(
outputDim:
Int
,
activation:
String
=
"tanh"
,
innerActivation:
String
=
"hard_sigmoid"
,
returnSequences:
Boolean
=
false
,
goBackwards:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
GRU
[
T
]
def
createKerasGaussianDropout
(
p:
Double
,
inputShape:
List
[
Int
] =
null
)
:
GaussianDropout
[
T
]
def
createKerasGaussianNoise
(
sigma:
Double
,
inputShape:
List
[
Int
] =
null
)
:
GaussianNoise
[
T
]
def
createKerasGlobalAveragePooling1D
(
inputShape:
List
[
Int
] =
null
)
:
GlobalAveragePooling1D
[
T
]
def
createKerasGlobalAveragePooling2D
(
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
GlobalAveragePooling2D
[
T
]
def
createKerasGlobalAveragePooling3D
(
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
GlobalAveragePooling3D
[
T
]
def
createKerasGlobalMaxPooling1D
(
inputShape:
List
[
Int
] =
null
)
:
GlobalMaxPooling1D
[
T
]
def
createKerasGlobalMaxPooling2D
(
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
GlobalMaxPooling2D
[
T
]
def
createKerasGlobalMaxPooling3D
(
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
GlobalMaxPooling3D
[
T
]
def
createKerasHighway
(
activation:
String
=
null
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
Highway
[
T
]
def
createKerasInput
(
name:
String
=
null
,
inputShape:
List
[
Int
] =
null
)
:
ModuleNode
[
T
]
def
createKerasInputLayer
(
inputShape:
List
[
Int
] =
null
)
:
KerasLayer
[
Activity
,
Activity
,
T
]
def
createKerasLSTM
(
outputDim:
Int
,
activation:
String
=
"tanh"
,
innerActivation:
String
=
"hard_sigmoid"
,
returnSequences:
Boolean
=
false
,
goBackwards:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
LSTM
[
T
]
def
createKerasLeakyReLU
(
alpha:
Double
=
0.01
,
inputShape:
List
[
Int
] =
null
)
:
LeakyReLU
[
T
]
def
createKerasLocallyConnected1D
(
nbFilter:
Int
,
filterLength:
Int
,
activation:
String
=
null
,
subsampleLength:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
LocallyConnected1D
[
T
]
def
createKerasLocallyConnected2D
(
nbFilter:
Int
,
nbRow:
Int
,
nbCol:
Int
,
activation:
String
=
null
,
borderMode:
String
=
"valid"
,
subsample:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
LocallyConnected2D
[
T
]
def
createKerasMasking
(
maskValue:
Double
=
0.0
,
inputShape:
List
[
Int
] =
null
)
:
Masking
[
T
]
def
createKerasMaxPooling1D
(
poolLength:
Int
=
2
,
stride:
Int
=
1
,
borderMode:
String
=
"valid"
,
inputShape:
List
[
Int
] =
null
)
:
MaxPooling1D
[
T
]
def
createKerasMaxPooling2D
(
poolSize:
List
[
Int
]
,
strides:
List
[
Int
]
,
borderMode:
String
=
"valid"
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
MaxPooling2D
[
T
]
def
createKerasMaxPooling3D
(
poolSize:
List
[
Int
]
,
strides:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
MaxPooling3D
[
T
]
def
createKerasMaxoutDense
(
outputDim:
Int
,
nbFeature:
Int
=
4
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
MaxoutDense
[
T
]
def
createKerasMerge
(
layers:
List
[
AbstractModule
[
Activity
,
Activity
,
T
]] =
null
,
mode:
String
=
"sum"
,
concatAxis:
Int
=
1
,
inputShape:
List
[
List
[
Int
]]
)
:
Merge
[
T
]
def
createKerasModel
(
input:
List
[
ModuleNode
[
T
]]
,
output:
List
[
ModuleNode
[
T
]]
)
:
Model
[
T
]
def
createKerasPermute
(
dims:
List
[
Int
]
,
inputShape:
List
[
Int
] =
null
)
:
Permute
[
T
]
def
createKerasRepeatVector
(
n:
Int
,
inputShape:
List
[
Int
] =
null
)
:
RepeatVector
[
T
]
def
createKerasReshape
(
targetShape:
List
[
Int
]
,
inputShape:
List
[
Int
] =
null
)
:
Reshape
[
T
]
def
createKerasSReLU
(
tLeftInit:
String
=
"zero"
,
aLeftInit:
String
=
"glorot_uniform"
,
tRightInit:
String
=
"glorot_uniform"
,
aRightInit:
String
=
"one"
,
sharedAxes:
List
[
Int
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
SReLU
[
T
]
def
createKerasSeparableConvolution2D
(
nbFilter:
Int
,
nbRow:
Int
,
nbCol:
Int
,
init:
String
=
"glorot_uniform"
,
activation:
String
=
null
,
borderMode:
String
=
"valid"
,
subsample:
List
[
Int
]
,
depthMultiplier:
Int
=
1
,
dimOrdering:
String
=
"th"
,
depthwiseRegularizer:
Regularizer
[
T
] =
null
,
pointwiseRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
bias:
Boolean
=
true
,
inputShape:
List
[
Int
] =
null
)
:
SeparableConvolution2D
[
T
]
def
createKerasSequential
()
:
Sequential
[
T
]
def
createKerasSimpleRNN
(
outputDim:
Int
,
activation:
String
=
"tanh"
,
returnSequences:
Boolean
=
false
,
goBackwards:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
inputShape:
List
[
Int
] =
null
)
:
SimpleRNN
[
T
]
def
createKerasSpatialDropout1D
(
p:
Double
=
0.5
,
inputShape:
List
[
Int
] =
null
)
:
SpatialDropout1D
[
T
]
def
createKerasSpatialDropout2D
(
p:
Double
=
0.5
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
SpatialDropout2D
[
T
]
def
createKerasSpatialDropout3D
(
p:
Double
=
0.5
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
SpatialDropout3D
[
T
]
def
createKerasThresholdedReLU
(
theta:
Double
=
1.0
,
inputShape:
List
[
Int
] =
null
)
:
ThresholdedReLU
[
T
]
def
createKerasTimeDistributed
(
layer:
KerasLayer
[
Tensor
[
T
],
Tensor
[
T
],
T
]
,
inputShape:
List
[
Int
] =
null
)
:
TimeDistributed
[
T
]
def
createKerasUpSampling1D
(
length:
Int
=
2
,
inputShape:
List
[
Int
] =
null
)
:
UpSampling1D
[
T
]
def
createKerasUpSampling2D
(
size:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
UpSampling2D
[
T
]
def
createKerasUpSampling3D
(
size:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
UpSampling3D
[
T
]
def
createKerasZeroPadding1D
(
padding:
List
[
Int
]
,
inputShape:
List
[
Int
] =
null
)
:
ZeroPadding1D
[
T
]
def
createKerasZeroPadding2D
(
padding:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
ZeroPadding2D
[
T
]
def
createKerasZeroPadding3D
(
padding:
List
[
Int
]
,
dimOrdering:
String
=
"th"
,
inputShape:
List
[
Int
] =
null
)
:
ZeroPadding3D
[
T
]
def
createKullbackLeiblerDivergenceCriterion
:
KullbackLeiblerDivergenceCriterion
[
T
]
Definition Classes
PythonBigDL
def
createL1Cost
()
:
L1Cost
[
T
]
Definition Classes
PythonBigDL
def
createL1HingeEmbeddingCriterion
(
margin:
Double
=
1
)
:
L1HingeEmbeddingCriterion
[
T
]
Definition Classes
PythonBigDL
def
createL1L2Regularizer
(
l1:
Double
,
l2:
Double
)
:
L1L2Regularizer
[
T
]
Definition Classes
PythonBigDL
def
createL1Penalty
(
l1weight:
Int
,
sizeAverage:
Boolean
=
false
,
provideOutput:
Boolean
=
true
)
:
L1Penalty
[
T
]
Definition Classes
PythonBigDL
def
createL1Regularizer
(
l1:
Double
)
:
L1Regularizer
[
T
]
Definition Classes
PythonBigDL
def
createL2Regularizer
(
l2:
Double
)
:
L2Regularizer
[
T
]
Definition Classes
PythonBigDL
def
createLBFGS
(
maxIter:
Int
=
20
,
maxEval:
Double
=
Double.MaxValue
,
tolFun:
Double
=
1e-5
,
tolX:
Double
=
1e-9
,
nCorrection:
Int
=
100
,
learningRate:
Double
=
1.0
,
verbose:
Boolean
=
false
,
lineSearch:
LineSearch
[
T
] =
null
,
lineSearchOptions:
Map
[
Any
,
Any
] =
null
)
:
LBFGS
[
T
]
Definition Classes
PythonBigDL
def
createLSTM
(
inputSize:
Int
,
hiddenSize:
Int
,
p:
Double
=
0
,
activation:
TensorModule
[
T
] =
null
,
innerActivation:
TensorModule
[
T
] =
null
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
LSTM
[
T
]
Definition Classes
PythonBigDL
def
createLSTMPeephole
(
inputSize:
Int
,
hiddenSize:
Int
,
p:
Double
=
0
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
LSTMPeephole
[
T
]
Definition Classes
PythonBigDL
def
createLayerNormalization
(
hiddenSize:
Int
)
:
LayerNormalization
[
T
]
Definition Classes
PythonBigDL
def
createLeakyReLU
(
negval:
Double
=
0.01
,
inplace:
Boolean
=
false
)
:
LeakyReLU
[
T
]
Definition Classes
PythonBigDL
def
createLinear
(
inputSize:
Int
,
outputSize:
Int
,
withBias:
Boolean
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
Linear
[
T
]
Definition Classes
PythonBigDL
def
createLocalImageFrame
(
images:
List
[
JTensor
]
,
labels:
List
[
JTensor
]
)
:
LocalImageFrame
Definition Classes
PythonBigDL
def
createLocalOptimizer
(
features:
List
[
JTensor
]
,
y:
JTensor
,
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
criterion:
Criterion
[
T
]
,
optimMethod:
Map
[
String
,
OptimMethod
[
T
]]
,
endTrigger:
Trigger
,
batchSize:
Int
,
localCores:
Int
)
:
Optimizer
[
T
,
MiniBatch
[
T
]]
Definition Classes
PythonBigDL
def
createLocallyConnected1D
(
nInputFrame:
Int
,
inputFrameSize:
Int
,
outputFrameSize:
Int
,
kernelW:
Int
,
strideW:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
LocallyConnected1D
[
T
]
Definition Classes
PythonBigDL
def
createLocallyConnected2D
(
nInputPlane:
Int
,
inputWidth:
Int
,
inputHeight:
Int
,
nOutputPlane:
Int
,
kernelW:
Int
,
kernelH:
Int
,
strideW:
Int
=
1
,
strideH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
,
withBias:
Boolean
=
true
,
dataFormat:
String
=
"NCHW"
)
:
LocallyConnected2D
[
T
]
Definition Classes
PythonBigDL
def
createLog
()
:
Log
[
T
]
Definition Classes
PythonBigDL
def
createLogSigmoid
()
:
LogSigmoid
[
T
]
Definition Classes
PythonBigDL
def
createLogSoftMax
()
:
LogSoftMax
[
T
]
Definition Classes
PythonBigDL
def
createLookupTable
(
nIndex:
Int
,
nOutput:
Int
,
paddingValue:
Double
=
0
,
maxNorm:
Double
=
Double.MaxValue
,
normType:
Double
=
2.0
,
shouldScaleGradByFreq:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
)
:
LookupTable
[
T
]
Definition Classes
PythonBigDL
def
createLookupTableSparse
(
nIndex:
Int
,
nOutput:
Int
,
combiner:
String
=
"sum"
,
maxNorm:
Double
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
)
:
LookupTableSparse
[
T
]
Definition Classes
PythonBigDL
def
createLoss
(
criterion:
Criterion
[
T
]
)
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createMAE
()
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createMM
(
transA:
Boolean
=
false
,
transB:
Boolean
=
false
)
:
MM
[
T
]
Definition Classes
PythonBigDL
def
createMSECriterion
:
MSECriterion
[
T
]
Definition Classes
PythonBigDL
def
createMV
(
trans:
Boolean
=
false
)
:
MV
[
T
]
Definition Classes
PythonBigDL
def
createMapTable
(
module:
AbstractModule
[
Activity
,
Activity
,
T
] =
null
)
:
MapTable
[
T
]
Definition Classes
PythonBigDL
def
createMarginCriterion
(
margin:
Double
=
1.0
,
sizeAverage:
Boolean
=
true
,
squared:
Boolean
=
false
)
:
MarginCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMarginRankingCriterion
(
margin:
Double
=
1.0
,
sizeAverage:
Boolean
=
true
)
:
MarginRankingCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMaskedSelect
()
:
MaskedSelect
[
T
]
Definition Classes
PythonBigDL
def
createMasking
(
maskValue:
Double
)
:
Masking
[
T
]
Definition Classes
PythonBigDL
def
createMatToFloats
(
validHeight:
Int
=
300
,
validWidth:
Int
=
300
,
validChannels:
Int
=
3
,
outKey:
String
=
ImageFeature.floats
,
shareBuffer:
Boolean
=
true
)
:
MatToFloats
Definition Classes
PythonBigDL
def
createMatToTensor
(
toRGB:
Boolean
=
false
,
tensorKey:
String
=
ImageFeature.imageTensor
)
:
MatToTensor
[
T
]
Definition Classes
PythonBigDL
def
createMax
(
dim:
Int
=
1
,
numInputDims:
Int
=
Int.MinValue
)
:
Max
[
T
]
Definition Classes
PythonBigDL
def
createMaxEpoch
(
max:
Int
)
:
Trigger
Definition Classes
PythonBigDL
def
createMaxIteration
(
max:
Int
)
:
Trigger
Definition Classes
PythonBigDL
def
createMaxScore
(
max:
Float
)
:
Trigger
Definition Classes
PythonBigDL
def
createMaxout
(
inputSize:
Int
,
outputSize:
Int
,
maxoutNumber:
Int
,
withBias:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
Tensor
[
T
] =
null
,
initBias:
Tensor
[
T
] =
null
)
:
Maxout
[
T
]
Definition Classes
PythonBigDL
def
createMean
(
dimension:
Int
=
1
,
nInputDims:
Int
=
1
,
squeeze:
Boolean
=
true
)
:
Mean
[
T
]
Definition Classes
PythonBigDL
def
createMeanAbsolutePercentageCriterion
:
MeanAbsolutePercentageCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMeanAveragePrecision
(
k:
Int
,
classes:
Int
)
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createMeanAveragePrecisionObjectDetection
(
classes:
Int
,
iou:
Float
,
useVoc2007:
Boolean
,
skipClass:
Int
)
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createMeanSquaredLogarithmicCriterion
:
MeanSquaredLogarithmicCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMin
(
dim:
Int
=
1
,
numInputDims:
Int
=
Int.MinValue
)
:
Min
[
T
]
Definition Classes
PythonBigDL
def
createMinLoss
(
min:
Float
)
:
Trigger
Definition Classes
PythonBigDL
def
createMixtureTable
(
dim:
Int
=
Int.MaxValue
)
:
MixtureTable
[
T
]
Definition Classes
PythonBigDL
def
createModel
(
input:
List
[
ModuleNode
[
T
]]
,
output:
List
[
ModuleNode
[
T
]]
)
:
Graph
[
T
]
Definition Classes
PythonBigDL
def
createModelPreprocessor
(
preprocessor:
AbstractModule
[
Activity
,
Activity
,
T
]
,
trainable:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
Graph
[
T
]
Definition Classes
PythonBigDL
def
createMsraFiller
(
varianceNormAverage:
Boolean
=
true
)
:
MsraFiller
Definition Classes
PythonBigDL
def
createMul
()
:
Mul
[
T
]
Definition Classes
PythonBigDL
def
createMulConstant
(
scalar:
Double
,
inplace:
Boolean
=
false
)
:
MulConstant
[
T
]
Definition Classes
PythonBigDL
def
createMultiCriterion
()
:
MultiCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMultiLabelMarginCriterion
(
sizeAverage:
Boolean
=
true
)
:
MultiLabelMarginCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMultiLabelSoftMarginCriterion
(
weights:
JTensor
=
null
,
sizeAverage:
Boolean
=
true
)
:
MultiLabelSoftMarginCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMultiMarginCriterion
(
p:
Int
=
1
,
weights:
JTensor
=
null
,
margin:
Double
=
1.0
,
sizeAverage:
Boolean
=
true
)
:
MultiMarginCriterion
[
T
]
Definition Classes
PythonBigDL
def
createMultiRNNCell
(
cells:
List
[
Cell
[
T
]]
)
:
MultiRNNCell
[
T
]
Definition Classes
PythonBigDL
def
createMultiStep
(
stepSizes:
List
[
Int
]
,
gamma:
Double
)
:
MultiStep
Definition Classes
PythonBigDL
def
createNDCG
(
k:
Int
=
10
,
negNum:
Int
=
100
)
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createNarrow
(
dimension:
Int
,
offset:
Int
,
length:
Int
=
1
)
:
Narrow
[
T
]
Definition Classes
PythonBigDL
def
createNarrowTable
(
offset:
Int
,
length:
Int
=
1
)
:
NarrowTable
[
T
]
Definition Classes
PythonBigDL
def
createNegative
(
inplace:
Boolean
)
:
Negative
[
T
]
Definition Classes
PythonBigDL
def
createNegativeEntropyPenalty
(
beta:
Double
)
:
NegativeEntropyPenalty
[
T
]
Definition Classes
PythonBigDL
def
createNode
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
x:
List
[
ModuleNode
[
T
]]
)
:
ModuleNode
[
T
]
Definition Classes
PythonBigDL
def
createNormalize
(
p:
Double
,
eps:
Double
=
1e-10
)
:
Normalize
[
T
]
Definition Classes
PythonBigDL
def
createNormalizeScale
(
p:
Double
,
eps:
Double
=
1e-10
,
scale:
Double
,
size:
List
[
Int
]
,
wRegularizer:
Regularizer
[
T
] =
null
)
:
NormalizeScale
[
T
]
Definition Classes
PythonBigDL
def
createOnes
()
:
Ones
.type
Definition Classes
PythonBigDL
def
createPGCriterion
(
sizeAverage:
Boolean
=
false
)
:
PGCriterion
[
T
]
Definition Classes
PythonBigDL
def
createPReLU
(
nOutputPlane:
Int
=
0
)
:
PReLU
[
T
]
Definition Classes
PythonBigDL
def
createPack
(
dimension:
Int
)
:
Pack
[
T
]
Definition Classes
PythonBigDL
def
createPadding
(
dim:
Int
,
pad:
Int
,
nInputDim:
Int
,
value:
Double
=
0.0
,
nIndex:
Int
=
1
)
:
Padding
[
T
]
Definition Classes
PythonBigDL
def
createPairwiseDistance
(
norm:
Int
=
2
)
:
PairwiseDistance
[
T
]
Definition Classes
PythonBigDL
def
createParallelAdam
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
beta1:
Double
=
0.9
,
beta2:
Double
=
0.999
,
Epsilon:
Double
=
1e-8
,
parallelNum:
Int
=
Engine.coreNumber()
)
:
ParallelAdam
[
T
]
Definition Classes
PythonBigDL
def
createParallelCriterion
(
repeatTarget:
Boolean
=
false
)
:
ParallelCriterion
[
T
]
Definition Classes
PythonBigDL
def
createParallelTable
()
:
ParallelTable
[
T
]
Definition Classes
PythonBigDL
def
createPipeline
(
list:
List
[
FeatureTransformer
]
)
:
FeatureTransformer
Definition Classes
PythonBigDL
def
createPixelBytesToMat
(
byteKey:
String
)
:
PixelBytesToMat
Definition Classes
PythonBigDL
def
createPixelNormalize
(
means:
List
[
Double
]
)
:
PixelNormalizer
Definition Classes
PythonBigDL
def
createPlateau
(
monitor:
String
,
factor:
Float
=
0.1f
,
patience:
Int
=
10
,
mode:
String
=
"min"
,
epsilon:
Float
=
1e-4f
,
cooldown:
Int
=
0
,
minLr:
Float
=
0
)
:
Plateau
Definition Classes
PythonBigDL
def
createPoissonCriterion
:
PoissonCriterion
[
T
]
Definition Classes
PythonBigDL
def
createPoly
(
power:
Double
,
maxIteration:
Int
)
:
Poly
Definition Classes
PythonBigDL
def
createPooler
(
resolution:
Int
,
scales:
List
[
Double
]
,
sampling_ratio:
Int
)
:
Pooler
[
T
]
Definition Classes
PythonBigDL
def
createPower
(
power:
Double
,
scale:
Double
=
1
,
shift:
Double
=
0
)
:
Power
[
T
]
Definition Classes
PythonBigDL
def
createPriorBox
(
minSizes:
List
[
Double
]
,
maxSizes:
List
[
Double
] =
null
,
aspectRatios:
List
[
Double
] =
null
,
isFlip:
Boolean
=
true
,
isClip:
Boolean
=
false
,
variances:
List
[
Double
] =
null
,
offset:
Float
=
0.5f
,
imgH:
Int
=
0
,
imgW:
Int
=
0
,
imgSize:
Int
=
0
,
stepH:
Float
=
0
,
stepW:
Float
=
0
,
step:
Float
=
0
)
:
PriorBox
[
T
]
Definition Classes
PythonBigDL
def
createProposal
(
preNmsTopN:
Int
,
postNmsTopN:
Int
,
ratios:
List
[
Double
]
,
scales:
List
[
Double
]
,
rpnPreNmsTopNTrain:
Int
=
12000
,
rpnPostNmsTopNTrain:
Int
=
2000
)
:
Proposal
Definition Classes
PythonBigDL
def
createRMSprop
(
learningRate:
Double
=
1e-2
,
learningRateDecay:
Double
=
0.0
,
decayRate:
Double
=
0.99
,
Epsilon:
Double
=
1e-8
)
:
RMSprop
[
T
]
Definition Classes
PythonBigDL
def
createRReLU
(
lower:
Double
=
1.0 / 8
,
upper:
Double
=
1.0 / 3
,
inplace:
Boolean
=
false
)
:
RReLU
[
T
]
Definition Classes
PythonBigDL
def
createRandomAlterAspect
(
min_area_ratio:
Float
,
max_area_ratio:
Int
,
min_aspect_ratio_change:
Float
,
interp_mode:
String
,
cropLength:
Int
)
:
RandomAlterAspect
Definition Classes
PythonBigDL
def
createRandomAspectScale
(
scales:
List
[
Int
]
,
scaleMultipleOf:
Int
=
1
,
maxSize:
Int
=
1000
)
:
RandomAspectScale
Definition Classes
PythonBigDL
def
createRandomCrop
(
cropWidth:
Int
,
cropHeight:
Int
,
isClip:
Boolean
)
:
RandomCrop
Definition Classes
PythonBigDL
def
createRandomCropper
(
cropWidth:
Int
,
cropHeight:
Int
,
mirror:
Boolean
,
cropperMethod:
String
,
channels:
Int
)
:
RandomCropper
Definition Classes
PythonBigDL
def
createRandomNormal
(
mean:
Double
,
stdv:
Double
)
:
RandomNormal
Definition Classes
PythonBigDL
def
createRandomResize
(
minSize:
Int
,
maxSize:
Int
)
:
RandomResize
Definition Classes
PythonBigDL
def
createRandomSampler
()
:
FeatureTransformer
Definition Classes
PythonBigDL
def
createRandomTransformer
(
transformer:
FeatureTransformer
,
prob:
Double
)
:
RandomTransformer
Definition Classes
PythonBigDL
def
createRandomUniform
()
:
InitializationMethod
Definition Classes
PythonBigDL
def
createRandomUniform
(
lower:
Double
,
upper:
Double
)
:
InitializationMethod
Definition Classes
PythonBigDL
def
createReLU
(
ip:
Boolean
=
false
)
:
ReLU
[
T
]
Definition Classes
PythonBigDL
def
createReLU6
(
inplace:
Boolean
=
false
)
:
ReLU6
[
T
]
Definition Classes
PythonBigDL
def
createRecurrent
()
:
Recurrent
[
T
]
Definition Classes
PythonBigDL
def
createRecurrentDecoder
(
outputLength:
Int
)
:
RecurrentDecoder
[
T
]
Definition Classes
PythonBigDL
def
createReplicate
(
nFeatures:
Int
,
dim:
Int
=
1
,
nDim:
Int
=
Int.MaxValue
)
:
Replicate
[
T
]
Definition Classes
PythonBigDL
def
createReshape
(
size:
List
[
Int
]
,
batchMode:
Boolean
=
null
)
:
Reshape
[
T
]
Definition Classes
PythonBigDL
def
createResize
(
resizeH:
Int
,
resizeW:
Int
,
resizeMode:
Int
=
Imgproc.INTER_LINEAR
,
useScaleFactor:
Boolean
)
:
Resize
Definition Classes
PythonBigDL
def
createResizeBilinear
(
outputHeight:
Int
,
outputWidth:
Int
,
alignCorner:
Boolean
,
dataFormat:
String
)
:
ResizeBilinear
[
T
]
Definition Classes
PythonBigDL
def
createReverse
(
dimension:
Int
=
1
,
isInplace:
Boolean
=
false
)
:
Reverse
[
T
]
Definition Classes
PythonBigDL
def
createRnnCell
(
inputSize:
Int
,
hiddenSize:
Int
,
activation:
TensorModule
[
T
]
,
isInputWithBias:
Boolean
=
true
,
isHiddenWithBias:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
uRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
RnnCell
[
T
]
Definition Classes
PythonBigDL
def
createRoiAlign
(
spatial_scale:
Double
,
sampling_ratio:
Int
,
pooled_h:
Int
,
pooled_w:
Int
)
:
RoiAlign
[
T
]
Definition Classes
PythonBigDL
def
createRoiHFlip
(
normalized:
Boolean
=
true
)
:
RoiHFlip
Definition Classes
PythonBigDL
def
createRoiNormalize
()
:
RoiNormalize
Definition Classes
PythonBigDL
def
createRoiPooling
(
pooled_w:
Int
,
pooled_h:
Int
,
spatial_scale:
Double
)
:
RoiPooling
[
T
]
Definition Classes
PythonBigDL
def
createRoiProject
(
needMeetCenterConstraint:
Boolean
)
:
RoiProject
Definition Classes
PythonBigDL
def
createRoiResize
(
normalized:
Boolean
)
:
RoiResize
Definition Classes
PythonBigDL
def
createSGD
(
learningRate:
Double
=
1e-3
,
learningRateDecay:
Double
=
0.0
,
weightDecay:
Double
=
0.0
,
momentum:
Double
=
0.0
,
dampening:
Double
=
Double.MaxValue
,
nesterov:
Boolean
=
false
,
leaningRateSchedule:
LearningRateSchedule
=
SGD.Default()
,
learningRates:
JTensor
=
null
,
weightDecays:
JTensor
=
null
)
:
SGD
[
T
]
Definition Classes
PythonBigDL
def
createSReLU
(
shape:
ArrayList
[
Int
]
,
shareAxes:
ArrayList
[
Int
] =
null
)
:
SReLU
[
T
]
Definition Classes
PythonBigDL
def
createSaturation
(
deltaLow:
Double
,
deltaHigh:
Double
)
:
Saturation
Definition Classes
PythonBigDL
def
createScale
(
size:
List
[
Int
]
)
:
Scale
[
T
]
Definition Classes
PythonBigDL
def
createSelect
(
dimension:
Int
,
index:
Int
)
:
Select
[
T
]
Definition Classes
PythonBigDL
def
createSelectTable
(
dimension:
Int
)
:
SelectTable
[
T
]
Definition Classes
PythonBigDL
def
createSequenceBeamSearch
(
vocabSize:
Int
,
beamSize:
Int
,
alpha:
Float
,
decodeLength:
Int
,
eosId:
Float
,
paddingValue:
Float
,
numHiddenLayers:
Int
,
hiddenSize:
Int
)
:
SequenceBeamSearch
[
T
]
Definition Classes
PythonBigDL
def
createSequential
()
:
Container
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
createSequentialSchedule
(
iterationPerEpoch:
Int
)
:
SequentialSchedule
Definition Classes
PythonBigDL
def
createSeveralIteration
(
interval:
Int
)
:
Trigger
Definition Classes
PythonBigDL
def
createSigmoid
()
:
Sigmoid
[
T
]
Definition Classes
PythonBigDL
def
createSmoothL1Criterion
(
sizeAverage:
Boolean
=
true
)
:
SmoothL1Criterion
[
T
]
Definition Classes
PythonBigDL
def
createSmoothL1CriterionWithWeights
(
sigma:
Double
,
num:
Int
=
0
)
:
SmoothL1CriterionWithWeights
[
T
]
Definition Classes
PythonBigDL
def
createSoftMarginCriterion
(
sizeAverage:
Boolean
=
true
)
:
SoftMarginCriterion
[
T
]
Definition Classes
PythonBigDL
def
createSoftMax
(
pos:
Int
=
1
)
:
SoftMax
[
T
]
Definition Classes
PythonBigDL
def
createSoftMin
()
:
SoftMin
[
T
]
Definition Classes
PythonBigDL
def
createSoftPlus
(
beta:
Double
=
1.0
)
:
SoftPlus
[
T
]
Definition Classes
PythonBigDL
def
createSoftShrink
(
lambda:
Double
=
0.5
)
:
SoftShrink
[
T
]
Definition Classes
PythonBigDL
def
createSoftSign
()
:
SoftSign
[
T
]
Definition Classes
PythonBigDL
def
createSoftmaxWithCriterion
(
ignoreLabel:
Integer
=
null
,
normalizeMode:
String
=
"VALID"
)
:
SoftmaxWithCriterion
[
T
]
Definition Classes
PythonBigDL
def
createSparseJoinTable
(
dimension:
Int
)
:
SparseJoinTable
[
T
]
Definition Classes
PythonBigDL
def
createSparseLinear
(
inputSize:
Int
,
outputSize:
Int
,
withBias:
Boolean
,
backwardStart:
Int
=
1
,
backwardLength:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
SparseLinear
[
T
]
Definition Classes
PythonBigDL
def
createSpatialAveragePooling
(
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
globalPooling:
Boolean
=
false
,
ceilMode:
Boolean
=
false
,
countIncludePad:
Boolean
=
true
,
divide:
Boolean
=
true
,
format:
String
=
"NCHW"
)
:
SpatialAveragePooling
[
T
]
Definition Classes
PythonBigDL
def
createSpatialBatchNormalization
(
nOutput:
Int
,
eps:
Double
=
1e-5
,
momentum:
Double
=
0.1
,
affine:
Boolean
=
true
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
,
dataFormat:
String
=
"NCHW"
)
:
SpatialBatchNormalization
[
T
]
Definition Classes
PythonBigDL
def
createSpatialContrastiveNormalization
(
nInputPlane:
Int
=
1
,
kernel:
JTensor
=
null
,
threshold:
Double
=
1e-4
,
thresval:
Double
=
1e-4
)
:
SpatialContrastiveNormalization
[
T
]
Definition Classes
PythonBigDL
def
createSpatialConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kernelW:
Int
,
kernelH:
Int
,
strideW:
Int
=
1
,
strideH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
nGroup:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
,
withBias:
Boolean
=
true
,
dataFormat:
String
=
"NCHW"
)
:
SpatialConvolution
[
T
]
Definition Classes
PythonBigDL
def
createSpatialConvolutionMap
(
connTable:
JTensor
,
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialConvolutionMap
[
T
]
Definition Classes
PythonBigDL
def
createSpatialCrossMapLRN
(
size:
Int
=
5
,
alpha:
Double
=
1.0
,
beta:
Double
=
0.75
,
k:
Double
=
1.0
,
dataFormat:
String
=
"NCHW"
)
:
SpatialCrossMapLRN
[
T
]
Definition Classes
PythonBigDL
def
createSpatialDilatedConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
dilationW:
Int
=
1
,
dilationH:
Int
=
1
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialDilatedConvolution
[
T
]
Definition Classes
PythonBigDL
def
createSpatialDivisiveNormalization
(
nInputPlane:
Int
=
1
,
kernel:
JTensor
=
null
,
threshold:
Double
=
1e-4
,
thresval:
Double
=
1e-4
)
:
SpatialDivisiveNormalization
[
T
]
Definition Classes
PythonBigDL
def
createSpatialDropout1D
(
initP:
Double
=
0.5
)
:
SpatialDropout1D
[
T
]
Definition Classes
PythonBigDL
def
createSpatialDropout2D
(
initP:
Double
=
0.5
,
dataFormat:
String
=
"NCHW"
)
:
SpatialDropout2D
[
T
]
Definition Classes
PythonBigDL
def
createSpatialDropout3D
(
initP:
Double
=
0.5
,
dataFormat:
String
=
"NCHW"
)
:
SpatialDropout3D
[
T
]
Definition Classes
PythonBigDL
def
createSpatialFullConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kW:
Int
,
kH:
Int
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
adjW:
Int
=
0
,
adjH:
Int
=
0
,
nGroup:
Int
=
1
,
noBias:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialFullConvolution
[
T
]
Definition Classes
PythonBigDL
def
createSpatialMaxPooling
(
kW:
Int
,
kH:
Int
,
dW:
Int
,
dH:
Int
,
padW:
Int
=
0
,
padH:
Int
=
0
,
ceilMode:
Boolean
=
false
,
format:
String
=
"NCHW"
)
:
SpatialMaxPooling
[
T
]
Definition Classes
PythonBigDL
def
createSpatialSeparableConvolution
(
nInputChannel:
Int
,
nOutputChannel:
Int
,
depthMultiplier:
Int
,
kW:
Int
,
kH:
Int
,
sW:
Int
=
1
,
sH:
Int
=
1
,
pW:
Int
=
0
,
pH:
Int
=
0
,
withBias:
Boolean
=
true
,
dataFormat:
String
=
"NCHW"
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
pRegularizer:
Regularizer
[
T
] =
null
)
:
SpatialSeparableConvolution
[
T
]
Definition Classes
PythonBigDL
def
createSpatialShareConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kernelW:
Int
,
kernelH:
Int
,
strideW:
Int
=
1
,
strideH:
Int
=
1
,
padW:
Int
=
0
,
padH:
Int
=
0
,
nGroup:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
,
withBias:
Boolean
=
true
)
:
SpatialShareConvolution
[
T
]
Definition Classes
PythonBigDL
def
createSpatialSubtractiveNormalization
(
nInputPlane:
Int
=
1
,
kernel:
JTensor
=
null
)
:
SpatialSubtractiveNormalization
[
T
]
Definition Classes
PythonBigDL
def
createSpatialWithinChannelLRN
(
size:
Int
=
5
,
alpha:
Double
=
1.0
,
beta:
Double
=
0.75
)
:
SpatialWithinChannelLRN
[
T
]
Definition Classes
PythonBigDL
def
createSpatialZeroPadding
(
padLeft:
Int
,
padRight:
Int
,
padTop:
Int
,
padBottom:
Int
)
:
SpatialZeroPadding
[
T
]
Definition Classes
PythonBigDL
def
createSplitTable
(
dimension:
Int
,
nInputDims:
Int
=
1
)
:
SplitTable
[
T
]
Definition Classes
PythonBigDL
def
createSqrt
()
:
Sqrt
[
T
]
Definition Classes
PythonBigDL
def
createSquare
()
:
Square
[
T
]
Definition Classes
PythonBigDL
def
createSqueeze
(
dim:
Int
=
Int.MinValue
,
numInputDims:
Int
=
Int.MinValue
)
:
Squeeze
[
T
]
Definition Classes
PythonBigDL
def
createStep
(
stepSize:
Int
,
gamma:
Double
)
:
Step
Definition Classes
PythonBigDL
def
createSum
(
dimension:
Int
=
1
,
nInputDims:
Int
=
1
,
sizeAverage:
Boolean
=
false
,
squeeze:
Boolean
=
true
)
:
Sum
[
T
]
Definition Classes
PythonBigDL
def
createTableOperation
(
operationLayer:
AbstractModule
[
Table
,
Tensor
[
T
],
T
]
)
:
TableOperation
[
T
]
Definition Classes
PythonBigDL
def
createTanh
()
:
Tanh
[
T
]
Definition Classes
PythonBigDL
def
createTanhShrink
()
:
TanhShrink
[
T
]
Definition Classes
PythonBigDL
def
createTemporalConvolution
(
inputFrameSize:
Int
,
outputFrameSize:
Int
,
kernelW:
Int
,
strideW:
Int
=
1
,
propagateBack:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
,
initWeight:
JTensor
=
null
,
initBias:
JTensor
=
null
,
initGradWeight:
JTensor
=
null
,
initGradBias:
JTensor
=
null
)
:
TemporalConvolution
[
T
]
Definition Classes
PythonBigDL
def
createTemporalMaxPooling
(
kW:
Int
,
dW:
Int
)
:
TemporalMaxPooling
[
T
]
Definition Classes
PythonBigDL
def
createThreshold
(
th:
Double
=
1e-6
,
v:
Double
=
0.0
,
ip:
Boolean
=
false
)
:
Threshold
[
T
]
Definition Classes
PythonBigDL
def
createTile
(
dim:
Int
,
copies:
Int
)
:
Tile
[
T
]
Definition Classes
PythonBigDL
def
createTimeDistributed
(
layer:
TensorModule
[
T
]
)
:
TimeDistributed
[
T
]
Definition Classes
PythonBigDL
def
createTimeDistributedCriterion
(
critrn:
TensorCriterion
[
T
]
,
sizeAverage:
Boolean
=
false
,
dimension:
Int
=
2
)
:
TimeDistributedCriterion
[
T
]
Definition Classes
PythonBigDL
def
createTimeDistributedMaskCriterion
(
critrn:
TensorCriterion
[
T
]
,
paddingValue:
Int
=
0
)
:
TimeDistributedMaskCriterion
[
T
]
Definition Classes
PythonBigDL
def
createTop1Accuracy
()
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createTop5Accuracy
()
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createTrainSummary
(
logDir:
String
,
appName:
String
)
:
TrainSummary
Definition Classes
PythonBigDL
def
createTransformer
(
vocabSize:
Int
,
hiddenSize:
Int
,
numHeads:
Int
,
filterSize:
Int
,
numHiddenlayers:
Int
,
postprocessDropout:
Double
,
attentionDropout:
Double
,
reluDropout:
Double
)
:
Transformer
[
T
]
Definition Classes
PythonBigDL
def
createTransformerCriterion
(
criterion:
AbstractCriterion
[
Activity
,
Activity
,
T
]
,
inputTransformer:
AbstractModule
[
Activity
,
Activity
,
T
] =
null
,
targetTransformer:
AbstractModule
[
Activity
,
Activity
,
T
] =
null
)
:
TransformerCriterion
[
T
]
Definition Classes
PythonBigDL
def
createTranspose
(
permutations:
List
[
List
[
Int
]]
)
:
Transpose
[
T
]
Definition Classes
PythonBigDL
def
createTreeNNAccuracy
()
:
ValidationMethod
[
T
]
Definition Classes
PythonBigDL
def
createTriggerAnd
(
first:
Trigger
,
others:
List
[
Trigger
]
)
:
Trigger
Definition Classes
PythonBigDL
def
createTriggerOr
(
first:
Trigger
,
others:
List
[
Trigger
]
)
:
Trigger
Definition Classes
PythonBigDL
def
createUnsqueeze
(
pos:
List
[
Int
]
,
numInputDims:
Int
=
Int.MinValue
)
:
Unsqueeze
[
T
]
Definition Classes
PythonBigDL
def
createUpSampling1D
(
length:
Int
)
:
UpSampling1D
[
T
]
Definition Classes
PythonBigDL
def
createUpSampling2D
(
size:
List
[
Int
]
,
dataFormat:
String
)
:
UpSampling2D
[
T
]
Definition Classes
PythonBigDL
def
createUpSampling3D
(
size:
List
[
Int
]
)
:
UpSampling3D
[
T
]
Definition Classes
PythonBigDL
def
createValidationSummary
(
logDir:
String
,
appName:
String
)
:
ValidationSummary
Definition Classes
PythonBigDL
def
createView
(
sizes:
List
[
Int
]
,
num_input_dims:
Int
=
0
)
:
View
[
T
]
Definition Classes
PythonBigDL
def
createVolumetricAveragePooling
(
kT:
Int
,
kW:
Int
,
kH:
Int
,
dT:
Int
,
dW:
Int
,
dH:
Int
,
padT:
Int
=
0
,
padW:
Int
=
0
,
padH:
Int
=
0
,
countIncludePad:
Boolean
=
true
,
ceilMode:
Boolean
=
false
)
:
VolumetricAveragePooling
[
T
]
Definition Classes
PythonBigDL
def
createVolumetricConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kT:
Int
,
kW:
Int
,
kH:
Int
,
dT:
Int
=
1
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padT:
Int
=
0
,
padW:
Int
=
0
,
padH:
Int
=
0
,
withBias:
Boolean
=
true
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
VolumetricConvolution
[
T
]
Definition Classes
PythonBigDL
def
createVolumetricFullConvolution
(
nInputPlane:
Int
,
nOutputPlane:
Int
,
kT:
Int
,
kW:
Int
,
kH:
Int
,
dT:
Int
=
1
,
dW:
Int
=
1
,
dH:
Int
=
1
,
padT:
Int
=
0
,
padW:
Int
=
0
,
padH:
Int
=
0
,
adjT:
Int
=
0
,
adjW:
Int
=
0
,
adjH:
Int
=
0
,
nGroup:
Int
=
1
,
noBias:
Boolean
=
false
,
wRegularizer:
Regularizer
[
T
] =
null
,
bRegularizer:
Regularizer
[
T
] =
null
)
:
VolumetricFullConvolution
[
T
]
Definition Classes
PythonBigDL
def
createVolumetricMaxPooling
(
kT:
Int
,
kW:
Int
,
kH:
Int
,
dT:
Int
,
dW:
Int
,
dH:
Int
,
padT:
Int
=
0
,
padW:
Int
=
0
,
padH:
Int
=
0
)
:
VolumetricMaxPooling
[
T
]
Definition Classes
PythonBigDL
def
createWarmup
(
delta:
Double
)
:
Warmup
Definition Classes
PythonBigDL
def
createXavier
()
:
Xavier
.type
Definition Classes
PythonBigDL
def
createZeros
()
:
Zeros
.type
Definition Classes
PythonBigDL
def
criterionBackward
(
criterion:
AbstractCriterion
[
Activity
,
Activity
,
T
]
,
input:
List
[_ <:
AnyRef
]
,
inputIsTable:
Boolean
,
target:
List
[_ <:
AnyRef
]
,
targetIsTable:
Boolean
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
criterionForward
(
criterion:
AbstractCriterion
[
Activity
,
Activity
,
T
]
,
input:
List
[_ <:
AnyRef
]
,
inputIsTable:
Boolean
,
target:
List
[_ <:
AnyRef
]
,
targetIsTable:
Boolean
)
:
T
Definition Classes
PythonBigDL
def
disableClip
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
)
:
Unit
Definition Classes
PythonBigDL
def
distributedImageFrameRandomSplit
(
imageFrame:
DistributedImageFrame
,
weights:
List
[
Double
]
)
:
Array
[
ImageFrame
]
Definition Classes
PythonBigDL
def
distributedImageFrameToImageTensorRdd
(
imageFrame:
DistributedImageFrame
,
floatKey:
String
=
ImageFeature.floats
,
toChw:
Boolean
=
true
)
:
JavaRDD
[
JTensor
]
Definition Classes
PythonBigDL
def
distributedImageFrameToLabelTensorRdd
(
imageFrame:
DistributedImageFrame
)
:
JavaRDD
[
JTensor
]
Definition Classes
PythonBigDL
def
distributedImageFrameToPredict
(
imageFrame:
DistributedImageFrame
,
key:
String
)
:
JavaRDD
[
List
[
Any
]]
Definition Classes
PythonBigDL
def
distributedImageFrameToSample
(
imageFrame:
DistributedImageFrame
,
key:
String
)
:
JavaRDD
[
Sample
]
Definition Classes
PythonBigDL
def
distributedImageFrameToUri
(
imageFrame:
DistributedImageFrame
,
key:
String
)
:
JavaRDD
[
String
]
Definition Classes
PythonBigDL
final
def
eq
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
def
equals
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
def
evaluate
(
module:
KerasModel
[
T
]
,
x:
JavaRDD
[
Sample
]
,
batchSize:
Int
=
32
)
:
List
[
EvaluatedResult
]
def
evaluate
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
featureTransformDataset
(
dataset:
DataSet
[
ImageFeature
]
,
transformer:
FeatureTransformer
)
:
DataSet
[
ImageFeature
]
Definition Classes
PythonBigDL
def
finalize
()
:
Unit
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
classOf[java.lang.Throwable]
)
def
findGraphNode
(
model:
Graph
[
T
]
,
name:
String
)
:
ModuleNode
[
T
]
Definition Classes
PythonBigDL
def
fit
(
module:
KerasModel
[
T
]
,
xTrain:
List
[
JTensor
]
,
yTrain:
JTensor
,
batchSize:
Int
,
epochs:
Int
,
xVal:
List
[
JTensor
]
,
yVal:
JTensor
,
localCores:
Int
)
:
Unit
def
fit
(
module:
KerasModel
[
T
]
,
x:
DataSet
[
ImageFeature
]
,
batchSize:
Int
,
epochs:
Int
,
validationData:
DataSet
[
ImageFeature
]
)
:
Unit
def
fit
(
module:
KerasModel
[
T
]
,
x:
JavaRDD
[
Sample
]
,
batchSize:
Int
=
32
,
epochs:
Int
=
10
,
validationData:
JavaRDD
[
Sample
] =
null
)
:
Unit
def
freeze
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
freezeLayers:
List
[
String
]
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
final
def
getClass
()
:
Class
[_]
Definition Classes
AnyRef → Any
def
getContainerModules
(
module:
Container
[
Activity
,
Activity
,
T
]
)
:
List
[
AbstractModule
[
Activity
,
Activity
,
T
]]
Definition Classes
PythonBigDL
def
getEngineType
()
:
String
Definition Classes
PythonBigDL
def
getFlattenModules
(
module:
Container
[
Activity
,
Activity
,
T
]
,
includeContainer:
Boolean
)
:
List
[
AbstractModule
[
Activity
,
Activity
,
T
]]
Definition Classes
PythonBigDL
def
getHiddenState
(
rec:
Recurrent
[
T
]
)
:
JActivity
Definition Classes
PythonBigDL
def
getInputShape
(
module:
Container
[
Activity
,
Activity
,
T
]
)
:
List
[
List
[
Int
]]
def
getNodeAndCoreNumber
()
:
Array
[
Int
]
Definition Classes
PythonBigDL
def
getOptimizerVersion
()
:
String
Definition Classes
PythonBigDL
def
getOutputShape
(
module:
Container
[
Activity
,
Activity
,
T
]
)
:
List
[
List
[
Int
]]
def
getRealClassNameOfJValue
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
String
Definition Classes
PythonBigDL
def
getRunningMean
(
module:
BatchNormalization
[
T
]
)
:
JTensor
def
getRunningMean
(
module:
BatchNormalization
[
T
]
)
:
JTensor
Definition Classes
PythonBigDL
def
getRunningStd
(
module:
BatchNormalization
[
T
]
)
:
JTensor
def
getRunningStd
(
module:
BatchNormalization
[
T
]
)
:
JTensor
Definition Classes
PythonBigDL
def
getWeights
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
hashCode
()
:
Int
Definition Classes
AnyRef → Any
def
imageFeatureGetKeys
(
imageFeature:
ImageFeature
)
:
List
[
String
]
Definition Classes
PythonBigDL
def
imageFeatureToImageTensor
(
imageFeature:
ImageFeature
,
floatKey:
String
=
ImageFeature.floats
,
toChw:
Boolean
=
true
)
:
JTensor
Definition Classes
PythonBigDL
def
imageFeatureToLabelTensor
(
imageFeature:
ImageFeature
)
:
JTensor
Definition Classes
PythonBigDL
def
initEngine
()
:
Unit
Definition Classes
PythonBigDL
def
isDistributed
(
imageFrame:
ImageFrame
)
:
Boolean
Definition Classes
PythonBigDL
final
def
isInstanceOf
[
T0
]
:
Boolean
Definition Classes
Any
def
isLocal
(
imageFrame:
ImageFrame
)
:
Boolean
Definition Classes
PythonBigDL
def
isWithWeights
(
module:
Module
[
T
]
)
:
Boolean
Definition Classes
PythonBigDL
def
jTensorsToActivity
(
input:
List
[_ <:
AnyRef
]
,
isTable:
Boolean
)
:
Activity
Definition Classes
PythonBigDL
def
loadBigDL
(
path:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
loadBigDLModule
(
modulePath:
String
,
weightPath:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
loadCaffe
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
defPath:
String
,
modelPath:
String
,
matchAll:
Boolean
=
true
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
loadCaffeModel
(
defPath:
String
,
modelPath:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
loadOptimMethod
(
path:
String
)
:
OptimMethod
[
T
]
Definition Classes
PythonBigDL
def
loadTF
(
path:
String
,
inputs:
List
[
String
]
,
outputs:
List
[
String
]
,
byteOrder:
String
,
binFile:
String
=
null
,
generatedBackward:
Boolean
=
true
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
loadTorch
(
path:
String
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
localImageFrameToImageTensor
(
imageFrame:
LocalImageFrame
,
floatKey:
String
=
ImageFeature.floats
,
toChw:
Boolean
=
true
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
localImageFrameToLabelTensor
(
imageFrame:
LocalImageFrame
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
localImageFrameToPredict
(
imageFrame:
LocalImageFrame
,
key:
String
)
:
List
[
List
[
Any
]]
Definition Classes
PythonBigDL
def
localImageFrameToSample
(
imageFrame:
LocalImageFrame
,
key:
String
)
:
List
[
Sample
]
Definition Classes
PythonBigDL
def
localImageFrameToUri
(
imageFrame:
LocalImageFrame
,
key:
String
)
:
List
[
String
]
Definition Classes
PythonBigDL
def
modelBackward
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
input:
List
[_ <:
AnyRef
]
,
inputIsTable:
Boolean
,
gradOutput:
List
[_ <:
AnyRef
]
,
gradOutputIsTable:
Boolean
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
modelEvaluate
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
valRDD:
JavaRDD
[
Sample
]
,
batchSize:
Int
,
valMethods:
List
[
ValidationMethod
[
T
]]
)
:
List
[
EvaluatedResult
]
Definition Classes
PythonBigDL
def
modelEvaluateImageFrame
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
imageFrame:
ImageFrame
,
batchSize:
Int
,
valMethods:
List
[
ValidationMethod
[
T
]]
)
:
List
[
EvaluatedResult
]
Definition Classes
PythonBigDL
def
modelForward
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
input:
List
[_ <:
AnyRef
]
,
inputIsTable:
Boolean
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
modelGetParameters
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
Map
[
Any
,
Map
[
Any
,
List
[
List
[
Any
]]]]
Definition Classes
PythonBigDL
def
modelPredictClass
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
dataRdd:
JavaRDD
[
Sample
]
)
:
JavaRDD
[
Int
]
Definition Classes
PythonBigDL
def
modelPredictImage
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
imageFrame:
ImageFrame
,
featLayerName:
String
,
shareBuffer:
Boolean
,
batchPerPartition:
Int
,
predictKey:
String
)
:
ImageFrame
Definition Classes
PythonBigDL
def
modelPredictRDD
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
dataRdd:
JavaRDD
[
Sample
]
,
batchSize:
Int
=
1
)
:
JavaRDD
[
JTensor
]
Definition Classes
PythonBigDL
def
modelSave
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
path:
String
,
overWrite:
Boolean
)
:
Unit
Definition Classes
PythonBigDL
final
def
ne
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
notify
()
:
Unit
Definition Classes
AnyRef
final
def
notifyAll
()
:
Unit
Definition Classes
AnyRef
def
predictLocal
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
features:
List
[
JTensor
]
,
batchSize:
Int
=
1
)
:
List
[
JTensor
]
Definition Classes
PythonBigDL
def
predictLocalClass
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
features:
List
[
JTensor
]
)
:
List
[
Int
]
Definition Classes
PythonBigDL
def
quantize
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
)
:
Module
[
T
]
Definition Classes
PythonBigDL
def
read
(
path:
String
,
sc:
JavaSparkContext
,
minPartitions:
Int
)
:
ImageFrame
Definition Classes
PythonBigDL
def
readParquet
(
path:
String
,
sc:
JavaSparkContext
)
:
DistributedImageFrame
Definition Classes
PythonBigDL
def
redirectSparkLogs
(
logPath:
String
)
:
Unit
Definition Classes
PythonBigDL
def
saveBigDLModule
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
modulePath:
String
,
weightPath:
String
,
overWrite:
Boolean
)
:
Unit
Definition Classes
PythonBigDL
def
saveCaffe
(
module:
AbstractModule
[
Activity
,
Activity
,
T
]
,
prototxtPath:
String
,
modelPath:
String
,
useV2:
Boolean
=
true
,
overwrite:
Boolean
=
false
)
:
Unit
Definition Classes
PythonBigDL
def
saveGraphTopology
(
model:
Graph
[
T
]
,
logPath:
String
)
:
Graph
[
T
]
Definition Classes
PythonBigDL
def
saveOptimMethod
(
method:
OptimMethod
[
T
]
,
path:
String
,
overWrite:
Boolean
=
false
)
:
Unit
Definition Classes
PythonBigDL
def
saveTF
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
inputs:
List
[
Any
]
,
path:
String
,
byteOrder:
String
,
dataFormat:
String
)
:
Unit
Definition Classes
PythonBigDL
def
saveTensorDictionary
(
tensors:
HashMap
[
String
,
JTensor
]
,
path:
String
)
:
Unit
Save tensor dictionary to a Java hashmap object file
Save tensor dictionary to a Java hashmap object file
Definition Classes
PythonBigDL
def
seqFilesToImageFrame
(
url:
String
,
sc:
JavaSparkContext
,
classNum:
Int
,
partitionNum:
Int
)
:
ImageFrame
Definition Classes
PythonBigDL
def
setCheckPoint
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
trigger:
Trigger
,
checkPointPath:
String
,
isOverwrite:
Boolean
)
:
Unit
Definition Classes
PythonBigDL
def
setConstantClip
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
min:
Float
,
max:
Float
)
:
Unit
Definition Classes
PythonBigDL
def
setCriterion
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
criterion:
Criterion
[
T
]
)
:
Unit
Definition Classes
PythonBigDL
def
setInitMethod
(
layer:
Initializable
,
initMethods:
ArrayList
[
InitializationMethod
]
)
:
layer
.type
Definition Classes
PythonBigDL
def
setInitMethod
(
layer:
Initializable
,
weightInitMethod:
InitializationMethod
,
biasInitMethod:
InitializationMethod
)
:
layer
.type
Definition Classes
PythonBigDL
def
setInputFormats
(
graph:
StaticGraph
[
T
]
,
inputFormat:
List
[
Int
]
)
:
StaticGraph
[
T
]
Definition Classes
PythonBigDL
def
setL2NormClip
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
normValue:
Float
)
:
Unit
Definition Classes
PythonBigDL
def
setLabel
(
labelMap:
Map
[
String
,
Float
]
,
imageFrame:
ImageFrame
)
:
Unit
Definition Classes
PythonBigDL
def
setModelSeed
(
seed:
Long
)
:
Unit
Definition Classes
PythonBigDL
def
setOptimizerVersion
(
version:
String
)
:
Unit
Definition Classes
PythonBigDL
def
setOutputFormats
(
graph:
StaticGraph
[
T
]
,
outputFormat:
List
[
Int
]
)
:
StaticGraph
[
T
]
Definition Classes
PythonBigDL
def
setRunningMean
(
module:
BatchNormalization
[
T
]
,
runningMean:
JTensor
)
:
Unit
def
setRunningMean
(
module:
BatchNormalization
[
T
]
,
runningMean:
JTensor
)
:
Unit
Definition Classes
PythonBigDL
def
setRunningStd
(
module:
BatchNormalization
[
T
]
,
runningStd:
JTensor
)
:
Unit
def
setRunningStd
(
module:
BatchNormalization
[
T
]
,
runningStd:
JTensor
)
:
Unit
Definition Classes
PythonBigDL
def
setStopGradient
(
model:
Graph
[
T
]
,
layers:
List
[
String
]
)
:
Graph
[
T
]
Definition Classes
PythonBigDL
def
setTrainData
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
trainingRdd:
JavaRDD
[
Sample
]
,
batchSize:
Int
)
:
Unit
Definition Classes
PythonBigDL
def
setTrainSummary
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
summary:
TrainSummary
)
:
Unit
Definition Classes
PythonBigDL
def
setValSummary
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
summary:
ValidationSummary
)
:
Unit
Definition Classes
PythonBigDL
def
setValidation
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
batchSize:
Int
,
trigger:
Trigger
,
xVal:
List
[
JTensor
]
,
yVal:
JTensor
,
vMethods:
List
[
ValidationMethod
[
T
]]
)
:
Unit
Definition Classes
PythonBigDL
def
setValidation
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
batchSize:
Int
,
trigger:
Trigger
,
valRdd:
JavaRDD
[
Sample
]
,
vMethods:
List
[
ValidationMethod
[
T
]]
)
:
Unit
Definition Classes
PythonBigDL
def
setValidationFromDataSet
(
optimizer:
Optimizer
[
T
,
MiniBatch
[
T
]]
,
batchSize:
Int
,
trigger:
Trigger
,
valDataSet:
DataSet
[
ImageFeature
]
,
vMethods:
List
[
ValidationMethod
[
T
]]
)
:
Unit
Definition Classes
PythonBigDL
def
setWeights
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
weights:
List
[
JTensor
]
)
:
Unit
Definition Classes
PythonBigDL
def
shapeToJList
(
shape:
Shape
)
:
List
[
List
[
Int
]]
def
showBigDlInfoLogs
()
:
Unit
Definition Classes
PythonBigDL
def
summaryReadScalar
(
summary:
Summary
,
tag:
String
)
:
List
[
List
[
Any
]]
Definition Classes
PythonBigDL
def
summarySetTrigger
(
summary:
TrainSummary
,
summaryName:
String
,
trigger:
Trigger
)
:
TrainSummary
Definition Classes
PythonBigDL
final
def
synchronized
[
T0
]
(
arg0: ⇒
T0
)
:
T0
Definition Classes
AnyRef
def
testSample
(
sample:
Sample
)
:
Sample
Definition Classes
PythonBigDL
def
testTensor
(
jTensor:
JTensor
)
:
JTensor
Definition Classes
PythonBigDL
def
toGraph
(
sequential:
Sequential
[
T
]
)
:
StaticGraph
[
T
]
Definition Classes
PythonBigDL
def
toJSample
(
psamples:
RDD
[
Sample
]
)
:
RDD
[
dataset.Sample
[
T
]]
Definition Classes
PythonBigDL
def
toJSample
(
record:
Sample
)
:
dataset.Sample
[
T
]
Definition Classes
PythonBigDL
def
toJTensor
(
tensor:
Tensor
[
T
]
)
:
JTensor
Definition Classes
PythonBigDL
def
toPySample
(
sample:
dataset.Sample
[
T
]
)
:
Sample
Definition Classes
PythonBigDL
def
toSampleArray
(
Xs:
List
[
Tensor
[
T
]]
,
y:
Tensor
[
T
] =
null
)
:
Array
[
dataset.Sample
[
T
]]
Definition Classes
PythonBigDL
def
toScalaArray
(
list:
List
[
Int
]
)
:
Array
[
Int
]
def
toScalaMultiShape
(
inputShape:
List
[
List
[
Int
]]
)
:
Shape
def
toScalaShape
(
inputShape:
List
[
Int
]
)
:
Shape
def
toString
()
:
String
Definition Classes
AnyRef → Any
def
toTensor
(
jTensor:
JTensor
)
:
Tensor
[
T
]
Definition Classes
PythonBigDL
def
trainTF
(
modelPath:
String
,
output:
String
,
samples:
JavaRDD
[
Sample
]
,
optMethod:
OptimMethod
[
T
]
,
criterion:
Criterion
[
T
]
,
batchSize:
Int
,
endWhen:
Trigger
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
transformImageFeature
(
transformer:
FeatureTransformer
,
feature:
ImageFeature
)
:
ImageFeature
Definition Classes
PythonBigDL
def
transformImageFrame
(
transformer:
FeatureTransformer
,
imageFrame:
ImageFrame
)
:
ImageFrame
Definition Classes
PythonBigDL
def
unFreeze
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
names:
List
[
String
]
)
:
AbstractModule
[
Activity
,
Activity
,
T
]
Definition Classes
PythonBigDL
def
uniform
(
a:
Double
,
b:
Double
,
size:
List
[
Int
]
)
:
JTensor
Definition Classes
PythonBigDL
def
updateParameters
(
model:
AbstractModule
[
Activity
,
Activity
,
T
]
,
lr:
Double
)
:
Unit
Definition Classes
PythonBigDL
final
def
wait
()
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
,
arg1:
Int
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
def
writeParquet
(
path:
String
,
output:
String
,
sc:
JavaSparkContext
,
partitionNum:
Int
=
1
)
:
Unit
Definition Classes
PythonBigDL
Inherited from
PythonBigDL
[
T
]
Inherited from
Serializable
Inherited from
Serializable
Inherited from
AnyRef
Inherited from
Any
Ungrouped